| Step |
Hyp |
Ref |
Expression |
| 1 |
|
raddcn.1 |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
| 2 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 3 |
2
|
addcn |
⊢ + ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 4 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 5 |
|
xpss12 |
⊢ ( ( ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( ℝ × ℝ ) ⊆ ( ℂ × ℂ ) ) |
| 6 |
4 4 5
|
mp2an |
⊢ ( ℝ × ℝ ) ⊆ ( ℂ × ℂ ) |
| 7 |
2
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 8 |
2
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 9 |
8
|
toponunii |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
| 10 |
7 7 9 9
|
txunii |
⊢ ( ℂ × ℂ ) = ∪ ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) |
| 11 |
10
|
cnrest |
⊢ ( ( + ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ∧ ( ℝ × ℝ ) ⊆ ( ℂ × ℂ ) ) → ( + ↾ ( ℝ × ℝ ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) ↾t ( ℝ × ℝ ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 12 |
3 6 11
|
mp2an |
⊢ ( + ↾ ( ℝ × ℝ ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) ↾t ( ℝ × ℝ ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 13 |
|
reex |
⊢ ℝ ∈ V |
| 14 |
|
txrest |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( TopOpen ‘ ℂfld ) ∈ Top ) ∧ ( ℝ ∈ V ∧ ℝ ∈ V ) ) → ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) ↾t ( ℝ × ℝ ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ×t ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
| 15 |
7 7 13 13 14
|
mp4an |
⊢ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) ↾t ( ℝ × ℝ ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ×t ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 16 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 17 |
1 16
|
eqtr2i |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) = 𝐽 |
| 18 |
17 17
|
oveq12i |
⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ×t ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) = ( 𝐽 ×t 𝐽 ) |
| 19 |
15 18
|
eqtri |
⊢ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) ↾t ( ℝ × ℝ ) ) = ( 𝐽 ×t 𝐽 ) |
| 20 |
19
|
oveq1i |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) ↾t ( ℝ × ℝ ) ) Cn ( TopOpen ‘ ℂfld ) ) = ( ( 𝐽 ×t 𝐽 ) Cn ( TopOpen ‘ ℂfld ) ) |
| 21 |
12 20
|
eleqtri |
⊢ ( + ↾ ( ℝ × ℝ ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( TopOpen ‘ ℂfld ) ) |
| 22 |
|
ax-addf |
⊢ + : ( ℂ × ℂ ) ⟶ ℂ |
| 23 |
|
ffn |
⊢ ( + : ( ℂ × ℂ ) ⟶ ℂ → + Fn ( ℂ × ℂ ) ) |
| 24 |
22 23
|
ax-mp |
⊢ + Fn ( ℂ × ℂ ) |
| 25 |
|
fnssres |
⊢ ( ( + Fn ( ℂ × ℂ ) ∧ ( ℝ × ℝ ) ⊆ ( ℂ × ℂ ) ) → ( + ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) ) |
| 26 |
24 6 25
|
mp2an |
⊢ ( + ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) |
| 27 |
|
fnov |
⊢ ( ( + ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) ↔ ( + ↾ ( ℝ × ℝ ) ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 ( + ↾ ( ℝ × ℝ ) ) 𝑦 ) ) ) |
| 28 |
26 27
|
mpbi |
⊢ ( + ↾ ( ℝ × ℝ ) ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 ( + ↾ ( ℝ × ℝ ) ) 𝑦 ) ) |
| 29 |
|
ovres |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 ( + ↾ ( ℝ × ℝ ) ) 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
| 30 |
29
|
mpoeq3ia |
⊢ ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 ( + ↾ ( ℝ × ℝ ) ) 𝑦 ) ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + 𝑦 ) ) |
| 31 |
28 30
|
eqtri |
⊢ ( + ↾ ( ℝ × ℝ ) ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + 𝑦 ) ) |
| 32 |
31
|
rneqi |
⊢ ran ( + ↾ ( ℝ × ℝ ) ) = ran ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + 𝑦 ) ) |
| 33 |
|
readdcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) |
| 34 |
33
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( 𝑥 + 𝑦 ) ∈ ℝ |
| 35 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + 𝑦 ) ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + 𝑦 ) ) |
| 36 |
35
|
rnmposs |
⊢ ( ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( 𝑥 + 𝑦 ) ∈ ℝ → ran ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + 𝑦 ) ) ⊆ ℝ ) |
| 37 |
34 36
|
ax-mp |
⊢ ran ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + 𝑦 ) ) ⊆ ℝ |
| 38 |
32 37
|
eqsstri |
⊢ ran ( + ↾ ( ℝ × ℝ ) ) ⊆ ℝ |
| 39 |
|
cnrest2 |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran ( + ↾ ( ℝ × ℝ ) ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( ( + ↾ ( ℝ × ℝ ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( + ↾ ( ℝ × ℝ ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
| 40 |
8 38 4 39
|
mp3an |
⊢ ( ( + ↾ ( ℝ × ℝ ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( + ↾ ( ℝ × ℝ ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
| 41 |
21 40
|
mpbi |
⊢ ( + ↾ ( ℝ × ℝ ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 42 |
17
|
oveq2i |
⊢ ( ( 𝐽 ×t 𝐽 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) = ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
| 43 |
41 31 42
|
3eltr3i |
⊢ ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + 𝑦 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |