| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrmulc1cn.k |
⊢ 𝐽 = ( ordTop ‘ ≤ ) |
| 2 |
|
xrmulc1cn.f |
⊢ 𝐹 = ( 𝑥 ∈ ℝ* ↦ ( 𝑥 ·e 𝐶 ) ) |
| 3 |
|
xrmulc1cn.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
| 4 |
|
letsr |
⊢ ≤ ∈ TosetRel |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → ≤ ∈ TosetRel ) |
| 6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) → 𝑥 ∈ ℝ* ) |
| 7 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) → 𝐶 ∈ ℝ+ ) |
| 8 |
7
|
rpxrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) → 𝐶 ∈ ℝ* ) |
| 9 |
6 8
|
xmulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) → ( 𝑥 ·e 𝐶 ) ∈ ℝ* ) |
| 10 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ* ( 𝑥 ·e 𝐶 ) ∈ ℝ* ) |
| 11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → 𝑦 ∈ ℝ* ) |
| 12 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → 𝐶 ∈ ℝ+ ) |
| 13 |
12
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → 𝐶 ∈ ℝ ) |
| 14 |
12
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → 𝐶 ≠ 0 ) |
| 15 |
|
xreceu |
⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) → ∃! 𝑥 ∈ ℝ* ( 𝐶 ·e 𝑥 ) = 𝑦 ) |
| 16 |
11 13 14 15
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ∃! 𝑥 ∈ ℝ* ( 𝐶 ·e 𝑥 ) = 𝑦 ) |
| 17 |
|
eqcom |
⊢ ( 𝑦 = ( 𝑥 ·e 𝐶 ) ↔ ( 𝑥 ·e 𝐶 ) = 𝑦 ) |
| 18 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑥 ∈ ℝ* ) → 𝑥 ∈ ℝ* ) |
| 19 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑥 ∈ ℝ* ) → 𝐶 ∈ ℝ* ) |
| 20 |
|
xmulcom |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝑥 ·e 𝐶 ) = ( 𝐶 ·e 𝑥 ) ) |
| 21 |
18 19 20
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑥 ∈ ℝ* ) → ( 𝑥 ·e 𝐶 ) = ( 𝐶 ·e 𝑥 ) ) |
| 22 |
21
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑥 ∈ ℝ* ) → ( ( 𝑥 ·e 𝐶 ) = 𝑦 ↔ ( 𝐶 ·e 𝑥 ) = 𝑦 ) ) |
| 23 |
17 22
|
bitrid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑥 ∈ ℝ* ) → ( 𝑦 = ( 𝑥 ·e 𝐶 ) ↔ ( 𝐶 ·e 𝑥 ) = 𝑦 ) ) |
| 24 |
23
|
reubidva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ( ∃! 𝑥 ∈ ℝ* 𝑦 = ( 𝑥 ·e 𝐶 ) ↔ ∃! 𝑥 ∈ ℝ* ( 𝐶 ·e 𝑥 ) = 𝑦 ) ) |
| 25 |
16 24
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ∃! 𝑥 ∈ ℝ* 𝑦 = ( 𝑥 ·e 𝐶 ) ) |
| 26 |
25
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ* ∃! 𝑥 ∈ ℝ* 𝑦 = ( 𝑥 ·e 𝐶 ) ) |
| 27 |
2
|
f1ompt |
⊢ ( 𝐹 : ℝ* –1-1-onto→ ℝ* ↔ ( ∀ 𝑥 ∈ ℝ* ( 𝑥 ·e 𝐶 ) ∈ ℝ* ∧ ∀ 𝑦 ∈ ℝ* ∃! 𝑥 ∈ ℝ* 𝑦 = ( 𝑥 ·e 𝐶 ) ) ) |
| 28 |
10 26 27
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : ℝ* –1-1-onto→ ℝ* ) |
| 29 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) ∧ 𝑦 ∈ ℝ* ) → 𝑥 ∈ ℝ* ) |
| 30 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) ∧ 𝑦 ∈ ℝ* ) → 𝑦 ∈ ℝ* ) |
| 31 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) ∧ 𝑦 ∈ ℝ* ) → 𝐶 ∈ ℝ+ ) |
| 32 |
|
xlemul1 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 ·e 𝐶 ) ≤ ( 𝑦 ·e 𝐶 ) ) ) |
| 33 |
29 30 31 32
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 ·e 𝐶 ) ≤ ( 𝑦 ·e 𝐶 ) ) ) |
| 34 |
|
ovex |
⊢ ( 𝑥 ·e 𝐶 ) ∈ V |
| 35 |
2
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑥 ·e 𝐶 ) ∈ V ) → ( 𝐹 ‘ 𝑥 ) = ( 𝑥 ·e 𝐶 ) ) |
| 36 |
29 34 35
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) ∧ 𝑦 ∈ ℝ* ) → ( 𝐹 ‘ 𝑥 ) = ( 𝑥 ·e 𝐶 ) ) |
| 37 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ·e 𝐶 ) = ( 𝑦 ·e 𝐶 ) ) |
| 38 |
|
ovex |
⊢ ( 𝑦 ·e 𝐶 ) ∈ V |
| 39 |
37 2 38
|
fvmpt |
⊢ ( 𝑦 ∈ ℝ* → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 ·e 𝐶 ) ) |
| 40 |
39
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) ∧ 𝑦 ∈ ℝ* ) → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 ·e 𝐶 ) ) |
| 41 |
36 40
|
breq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) ∧ 𝑦 ∈ ℝ* ) → ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝑥 ·e 𝐶 ) ≤ ( 𝑦 ·e 𝐶 ) ) ) |
| 42 |
33 41
|
bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ≤ 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 43 |
42
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) → ∀ 𝑦 ∈ ℝ* ( 𝑥 ≤ 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 44 |
43
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* ( 𝑥 ≤ 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 45 |
|
df-isom |
⊢ ( 𝐹 Isom ≤ , ≤ ( ℝ* , ℝ* ) ↔ ( 𝐹 : ℝ* –1-1-onto→ ℝ* ∧ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* ( 𝑥 ≤ 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 46 |
28 44 45
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 Isom ≤ , ≤ ( ℝ* , ℝ* ) ) |
| 47 |
|
ledm |
⊢ ℝ* = dom ≤ |
| 48 |
47 47
|
ordthmeolem |
⊢ ( ( ≤ ∈ TosetRel ∧ ≤ ∈ TosetRel ∧ 𝐹 Isom ≤ , ≤ ( ℝ* , ℝ* ) ) → 𝐹 ∈ ( ( ordTop ‘ ≤ ) Cn ( ordTop ‘ ≤ ) ) ) |
| 49 |
5 5 46 48
|
syl3anc |
⊢ ( 𝜑 → 𝐹 ∈ ( ( ordTop ‘ ≤ ) Cn ( ordTop ‘ ≤ ) ) ) |
| 50 |
1 1
|
oveq12i |
⊢ ( 𝐽 Cn 𝐽 ) = ( ( ordTop ‘ ≤ ) Cn ( ordTop ‘ ≤ ) ) |
| 51 |
49 50
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐽 ) ) |