| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrmulc1cn.k |
|
| 2 |
|
xrmulc1cn.f |
|
| 3 |
|
xrmulc1cn.c |
|
| 4 |
|
letsr |
|
| 5 |
4
|
a1i |
|
| 6 |
|
simpr |
|
| 7 |
3
|
adantr |
|
| 8 |
7
|
rpxrd |
|
| 9 |
6 8
|
xmulcld |
|
| 10 |
9
|
ralrimiva |
|
| 11 |
|
simpr |
|
| 12 |
3
|
adantr |
|
| 13 |
12
|
rpred |
|
| 14 |
12
|
rpne0d |
|
| 15 |
|
xreceu |
|
| 16 |
11 13 14 15
|
syl3anc |
|
| 17 |
|
eqcom |
|
| 18 |
|
simpr |
|
| 19 |
8
|
adantlr |
|
| 20 |
|
xmulcom |
|
| 21 |
18 19 20
|
syl2anc |
|
| 22 |
21
|
eqeq1d |
|
| 23 |
17 22
|
bitrid |
|
| 24 |
23
|
reubidva |
|
| 25 |
16 24
|
mpbird |
|
| 26 |
25
|
ralrimiva |
|
| 27 |
2
|
f1ompt |
|
| 28 |
10 26 27
|
sylanbrc |
|
| 29 |
|
simplr |
|
| 30 |
|
simpr |
|
| 31 |
3
|
ad2antrr |
|
| 32 |
|
xlemul1 |
|
| 33 |
29 30 31 32
|
syl3anc |
|
| 34 |
|
ovex |
|
| 35 |
2
|
fvmpt2 |
|
| 36 |
29 34 35
|
sylancl |
|
| 37 |
|
oveq1 |
|
| 38 |
|
ovex |
|
| 39 |
37 2 38
|
fvmpt |
|
| 40 |
39
|
adantl |
|
| 41 |
36 40
|
breq12d |
|
| 42 |
33 41
|
bitr4d |
|
| 43 |
42
|
ralrimiva |
|
| 44 |
43
|
ralrimiva |
|
| 45 |
|
df-isom |
|
| 46 |
28 44 45
|
sylanbrc |
|
| 47 |
|
ledm |
|
| 48 |
47 47
|
ordthmeolem |
|
| 49 |
5 5 46 48
|
syl3anc |
|
| 50 |
1 1
|
oveq12i |
|
| 51 |
49 50
|
eleqtrrdi |
|