Metamath Proof Explorer


Theorem rrvmbfm

Description: A real-valued random variable is a measurable function from its sample space to the Borel sigma-algebra. (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Hypothesis isrrvv.1 φPProb
Assertion rrvmbfm φXRndVarPXdomPMblFnμ𝔅

Proof

Step Hyp Ref Expression
1 isrrvv.1 φPProb
2 dmeq p=Pdomp=domP
3 2 oveq1d p=PdompMblFnμ𝔅=domPMblFnμ𝔅
4 df-rrv RndVar=pProbdompMblFnμ𝔅
5 ovex domPMblFnμ𝔅V
6 3 4 5 fvmpt PProbRndVarP=domPMblFnμ𝔅
7 1 6 syl φRndVarP=domPMblFnμ𝔅
8 7 eleq2d φXRndVarPXdomPMblFnμ𝔅