Metamath Proof Explorer


Theorem rrvmbfm

Description: A real-valued random variable is a measurable function from its sample space to the Borel sigma-algebra. (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Hypothesis isrrvv.1 φ P Prob
Assertion rrvmbfm φ X RndVar P X dom P MblFn μ 𝔅

Proof

Step Hyp Ref Expression
1 isrrvv.1 φ P Prob
2 dmeq p = P dom p = dom P
3 2 oveq1d p = P dom p MblFn μ 𝔅 = dom P MblFn μ 𝔅
4 df-rrv RndVar = p Prob dom p MblFn μ 𝔅
5 ovex dom P MblFn μ 𝔅 V
6 3 4 5 fvmpt P Prob RndVar P = dom P MblFn μ 𝔅
7 1 6 syl φ RndVar P = dom P MblFn μ 𝔅
8 7 eleq2d φ X RndVar P X dom P MblFn μ 𝔅