Metamath Proof Explorer


Theorem rrxf

Description: Euclidean vectors as functions. (Contributed by Thierry Arnoux, 7-Jul-2019)

Ref Expression
Hypotheses rrxmval.1 X=hI|finSupp0h
rrxf.1 φFX
Assertion rrxf φF:I

Proof

Step Hyp Ref Expression
1 rrxmval.1 X=hI|finSupp0h
2 rrxf.1 φFX
3 1 ssrab3 XI
4 3 2 sselid φFI
5 elmapi FIF:I
6 4 5 syl φF:I