Database
BASIC TOPOLOGY
Metric subcomplex vector spaces
Euclidean spaces
rrxf
Next ⟩
rrxfsupp
Metamath Proof Explorer
Ascii
Unicode
Theorem
rrxf
Description:
Euclidean vectors as functions.
(Contributed by
Thierry Arnoux
, 7-Jul-2019)
Ref
Expression
Hypotheses
rrxmval.1
⊢
X
=
h
∈
ℝ
I
|
finSupp
0
⁡
h
rrxf.1
⊢
φ
→
F
∈
X
Assertion
rrxf
⊢
φ
→
F
:
I
⟶
ℝ
Proof
Step
Hyp
Ref
Expression
1
rrxmval.1
⊢
X
=
h
∈
ℝ
I
|
finSupp
0
⁡
h
2
rrxf.1
⊢
φ
→
F
∈
X
3
1
ssrab3
⊢
X
⊆
ℝ
I
4
3
2
sselid
⊢
φ
→
F
∈
ℝ
I
5
elmapi
⊢
F
∈
ℝ
I
→
F
:
I
⟶
ℝ
6
4
5
syl
⊢
φ
→
F
:
I
⟶
ℝ