Description: The scalar product over generalized Euclidean spaces is the componentwise real number multiplication. (Contributed by Thierry Arnoux, 18-Jan-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rrxval.r | |
|
rrxbase.b | |
||
rrxvsca.r | |
||
rrxvsca.i | |
||
rrxvsca.j | |
||
rrxvsca.a | |
||
rrxvsca.x | |
||
Assertion | rrxvsca | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxval.r | |
|
2 | rrxbase.b | |
|
3 | rrxvsca.r | |
|
4 | rrxvsca.i | |
|
5 | rrxvsca.j | |
|
6 | rrxvsca.a | |
|
7 | rrxvsca.x | |
|
8 | 1 | rrxval | |
9 | 4 8 | syl | |
10 | 9 | fveq2d | |
11 | 3 10 | eqtrid | |
12 | 11 | oveqd | |
13 | 12 | fveq1d | |
14 | eqid | |
|
15 | eqid | |
|
16 | rebase | |
|
17 | 9 | fveq2d | |
18 | eqid | |
|
19 | 18 15 | tcphbas | |
20 | 17 19 | eqtr4di | |
21 | 7 20 | eleqtrd | |
22 | eqid | |
|
23 | 18 22 | tcphvsca | |
24 | 23 | eqcomi | |
25 | remulr | |
|
26 | 14 15 16 4 6 21 5 24 25 | frlmvscaval | |
27 | 13 26 | eqtrd | |