Metamath Proof Explorer


Theorem rrxvsca

Description: The scalar product over generalized Euclidean spaces is the componentwise real number multiplication. (Contributed by Thierry Arnoux, 18-Jan-2023)

Ref Expression
Hypotheses rrxval.r H=msup
rrxbase.b B=BaseH
rrxvsca.r ˙=H
rrxvsca.i φIV
rrxvsca.j φJI
rrxvsca.a φA
rrxvsca.x φXBaseH
Assertion rrxvsca φA˙XJ=AXJ

Proof

Step Hyp Ref Expression
1 rrxval.r H=msup
2 rrxbase.b B=BaseH
3 rrxvsca.r ˙=H
4 rrxvsca.i φIV
5 rrxvsca.j φJI
6 rrxvsca.a φA
7 rrxvsca.x φXBaseH
8 1 rrxval IVH=toCPreHilfldfreeLModI
9 4 8 syl φH=toCPreHilfldfreeLModI
10 9 fveq2d φH=toCPreHilfldfreeLModI
11 3 10 eqtrid φ˙=toCPreHilfldfreeLModI
12 11 oveqd φA˙X=AtoCPreHilfldfreeLModIX
13 12 fveq1d φA˙XJ=AtoCPreHilfldfreeLModIXJ
14 eqid fldfreeLModI=fldfreeLModI
15 eqid BasefldfreeLModI=BasefldfreeLModI
16 rebase =Basefld
17 9 fveq2d φBaseH=BasetoCPreHilfldfreeLModI
18 eqid toCPreHilfldfreeLModI=toCPreHilfldfreeLModI
19 18 15 tcphbas BasefldfreeLModI=BasetoCPreHilfldfreeLModI
20 17 19 eqtr4di φBaseH=BasefldfreeLModI
21 7 20 eleqtrd φXBasefldfreeLModI
22 eqid fldfreeLModI=fldfreeLModI
23 18 22 tcphvsca fldfreeLModI=toCPreHilfldfreeLModI
24 23 eqcomi toCPreHilfldfreeLModI=fldfreeLModI
25 remulr ×=fld
26 14 15 16 4 6 21 5 24 25 frlmvscaval φAtoCPreHilfldfreeLModIXJ=AXJ
27 13 26 eqtrd φA˙XJ=AXJ