Metamath Proof Explorer


Theorem rspc2ev

Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999)

Ref Expression
Hypotheses rspc2v.1 x=Aφχ
rspc2v.2 y=Bχψ
Assertion rspc2ev ACBDψxCyDφ

Proof

Step Hyp Ref Expression
1 rspc2v.1 x=Aφχ
2 rspc2v.2 y=Bχψ
3 2 rspcev BDψyDχ
4 3 anim2i ACBDψACyDχ
5 4 3impb ACBDψACyDχ
6 1 rexbidv x=AyDφyDχ
7 6 rspcev ACyDχxCyDφ
8 5 7 syl ACBDψxCyDφ