Metamath Proof Explorer


Theorem rspc3v

Description: 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005)

Ref Expression
Hypotheses rspc3v.1 x=Aφχ
rspc3v.2 y=Bχθ
rspc3v.3 z=Cθψ
Assertion rspc3v ARBSCTxRySzTφψ

Proof

Step Hyp Ref Expression
1 rspc3v.1 x=Aφχ
2 rspc3v.2 y=Bχθ
3 rspc3v.3 z=Cθψ
4 1 ralbidv x=AzTφzTχ
5 2 ralbidv y=BzTχzTθ
6 4 5 rspc2v ARBSxRySzTφzTθ
7 3 rspcv CTzTθψ
8 6 7 sylan9 ARBSCTxRySzTφψ
9 8 3impa ARBSCTxRySzTφψ