Metamath Proof Explorer


Theorem rspceaov

Description: A frequently used special case of rspc2ev for operation values, analogous to rspceov . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion rspceaov CADBS=CFDxAyBS=xFy

Proof

Step Hyp Ref Expression
1 eqidd x=CF=F
2 id x=Cx=C
3 eqidd x=Cy=y
4 1 2 3 aoveq123d x=CxFy=CFy
5 4 eqeq2d x=CS=xFyS=CFy
6 eqidd y=DF=F
7 eqidd y=DC=C
8 id y=Dy=D
9 6 7 8 aoveq123d y=DCFy=CFD
10 9 eqeq2d y=DS=CFyS=CFD
11 5 10 rspc2ev CADBS=CFDxAyBS=xFy