Metamath Proof Explorer


Theorem rspecbas

Description: The prime ideals form the base of the spectrum of a ring. (Contributed by Thierry Arnoux, 2-Jun-2024)

Ref Expression
Hypothesis rspecbas.1 S = Spec R
Assertion rspecbas R Ring PrmIdeal R = Base S

Proof

Step Hyp Ref Expression
1 rspecbas.1 S = Spec R
2 prmidlssidl R Ring PrmIdeal R LIdeal R
3 eqid IDLsrg R = IDLsrg R
4 eqid LIdeal R = LIdeal R
5 3 4 idlsrgbas R Ring LIdeal R = Base IDLsrg R
6 2 5 sseqtrd R Ring PrmIdeal R Base IDLsrg R
7 eqid IDLsrg R 𝑠 PrmIdeal R = IDLsrg R 𝑠 PrmIdeal R
8 eqid Base IDLsrg R = Base IDLsrg R
9 7 8 ressbas2 PrmIdeal R Base IDLsrg R PrmIdeal R = Base IDLsrg R 𝑠 PrmIdeal R
10 6 9 syl R Ring PrmIdeal R = Base IDLsrg R 𝑠 PrmIdeal R
11 rspecval R Ring Spec R = IDLsrg R 𝑠 PrmIdeal R
12 1 11 eqtrid R Ring S = IDLsrg R 𝑠 PrmIdeal R
13 12 fveq2d R Ring Base S = Base IDLsrg R 𝑠 PrmIdeal R
14 10 13 eqtr4d R Ring PrmIdeal R = Base S