Metamath Proof Explorer


Theorem rusgrnumwwlklem

Description: Lemma for rusgrnumwwlk etc. (Contributed by Alexander van der Vekens, 21-Jul-2018) (Revised by AV, 7-May-2021)

Ref Expression
Hypotheses rusgrnumwwlk.v V=VtxG
rusgrnumwwlk.l L=vV,n0wnWWalksNG|w0=v
Assertion rusgrnumwwlklem PVN0PLN=wNWWalksNG|w0=P

Proof

Step Hyp Ref Expression
1 rusgrnumwwlk.v V=VtxG
2 rusgrnumwwlk.l L=vV,n0wnWWalksNG|w0=v
3 oveq1 n=NnWWalksNG=NWWalksNG
4 3 adantl v=Pn=NnWWalksNG=NWWalksNG
5 eqeq2 v=Pw0=vw0=P
6 5 adantr v=Pn=Nw0=vw0=P
7 4 6 rabeqbidv v=Pn=NwnWWalksNG|w0=v=wNWWalksNG|w0=P
8 7 fveq2d v=Pn=NwnWWalksNG|w0=v=wNWWalksNG|w0=P
9 fvex wNWWalksNG|w0=PV
10 8 2 9 ovmpoa PVN0PLN=wNWWalksNG|w0=P