Metamath Proof Explorer


Theorem rusgrnumwwlkslem

Description: Lemma for rusgrnumwwlks . (Contributed by Alexander van der Vekens, 23-Aug-2018)

Ref Expression
Assertion rusgrnumwwlkslem YwZ|w0=PwX|φψ=wX|φY0=Pψ

Proof

Step Hyp Ref Expression
1 fveq1 w=Yw0=Y0
2 1 eqeq1d w=Yw0=PY0=P
3 2 elrab YwZ|w0=PYZY0=P
4 ibar Y0=PφψY0=Pφψ
5 3anass Y0=PφψY0=Pφψ
6 3ancoma Y0=PφψφY0=Pψ
7 5 6 bitr3i Y0=PφψφY0=Pψ
8 4 7 bitrdi Y0=PφψφY0=Pψ
9 8 ad2antlr YZY0=PwXφψφY0=Pψ
10 9 rabbidva YZY0=PwX|φψ=wX|φY0=Pψ
11 3 10 sylbi YwZ|w0=PwX|φψ=wX|φY0=Pψ