Metamath Proof Explorer


Theorem rusgrpropedg

Description: The properties of a k-regular simple graph expressed with edges. (Contributed by AV, 23-Dec-2020) (Revised by AV, 27-Dec-2020)

Ref Expression
Hypothesis rusgrpropnb.v V=VtxG
Assertion rusgrpropedg GRegUSGraphKGUSGraphK0*vVeEdgG|ve=K

Proof

Step Hyp Ref Expression
1 rusgrpropnb.v V=VtxG
2 1 rusgrpropnb GRegUSGraphKGUSGraphK0*vVGNeighbVtxv=K
3 eqid EdgG=EdgG
4 1 3 nbedgusgr GUSGraphvVGNeighbVtxv=eEdgG|ve
5 4 eqeq1d GUSGraphvVGNeighbVtxv=KeEdgG|ve=K
6 5 biimpd GUSGraphvVGNeighbVtxv=KeEdgG|ve=K
7 6 ralimdva GUSGraphvVGNeighbVtxv=KvVeEdgG|ve=K
8 7 adantr GUSGraphK0*vVGNeighbVtxv=KvVeEdgG|ve=K
9 8 imdistani GUSGraphK0*vVGNeighbVtxv=KGUSGraphK0*vVeEdgG|ve=K
10 df-3an GUSGraphK0*vVGNeighbVtxv=KGUSGraphK0*vVGNeighbVtxv=K
11 df-3an GUSGraphK0*vVeEdgG|ve=KGUSGraphK0*vVeEdgG|ve=K
12 9 10 11 3imtr4i GUSGraphK0*vVGNeighbVtxv=KGUSGraphK0*vVeEdgG|ve=K
13 2 12 syl GRegUSGraphKGUSGraphK0*vVeEdgG|ve=K