Metamath Proof Explorer


Theorem s3wwlks2on

Description: A length 3 string which represents a walk of length 2 between two vertices. (Contributed by Alexander van der Vekens, 15-Feb-2018) (Revised by AV, 12-May-2021)

Ref Expression
Hypothesis s3wwlks2on.v V=VtxG
Assertion s3wwlks2on GUPGraphAVCV⟨“ABC”⟩A2WWalksNOnGCffWalksG⟨“ABC”⟩f=2

Proof

Step Hyp Ref Expression
1 s3wwlks2on.v V=VtxG
2 wwlknon ⟨“ABC”⟩A2WWalksNOnGC⟨“ABC”⟩2WWalksNG⟨“ABC”⟩0=A⟨“ABC”⟩2=C
3 2 a1i GUPGraphAVCV⟨“ABC”⟩A2WWalksNOnGC⟨“ABC”⟩2WWalksNG⟨“ABC”⟩0=A⟨“ABC”⟩2=C
4 3anass ⟨“ABC”⟩2WWalksNG⟨“ABC”⟩0=A⟨“ABC”⟩2=C⟨“ABC”⟩2WWalksNG⟨“ABC”⟩0=A⟨“ABC”⟩2=C
5 s3fv0 AV⟨“ABC”⟩0=A
6 s3fv2 CV⟨“ABC”⟩2=C
7 5 6 anim12i AVCV⟨“ABC”⟩0=A⟨“ABC”⟩2=C
8 7 3adant1 GUPGraphAVCV⟨“ABC”⟩0=A⟨“ABC”⟩2=C
9 8 biantrud GUPGraphAVCV⟨“ABC”⟩2WWalksNG⟨“ABC”⟩2WWalksNG⟨“ABC”⟩0=A⟨“ABC”⟩2=C
10 4 9 bitr4id GUPGraphAVCV⟨“ABC”⟩2WWalksNG⟨“ABC”⟩0=A⟨“ABC”⟩2=C⟨“ABC”⟩2WWalksNG
11 wlklnwwlknupgr GUPGraphffWalksG⟨“ABC”⟩f=2⟨“ABC”⟩2WWalksNG
12 11 bicomd GUPGraph⟨“ABC”⟩2WWalksNGffWalksG⟨“ABC”⟩f=2
13 12 3ad2ant1 GUPGraphAVCV⟨“ABC”⟩2WWalksNGffWalksG⟨“ABC”⟩f=2
14 3 10 13 3bitrd GUPGraphAVCV⟨“ABC”⟩A2WWalksNOnGCffWalksG⟨“ABC”⟩f=2