Metamath Proof Explorer


Theorem sadcl

Description: The sum of two sequences is a sequence. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion sadcl A0B0AsaddB0

Proof

Step Hyp Ref Expression
1 simpl A0B0A0
2 simpr A0B0B0
3 eqid seq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1=seq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1
4 1 2 3 sadfval A0B0AsaddB=k0|haddkAkBseq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1k
5 ssrab2 k0|haddkAkBseq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1k0
6 4 5 eqsstrdi A0B0AsaddB0