Metamath Proof Explorer


Theorem satfdmfmla

Description: The domain of the satisfaction predicate as function over wff codes in any model M and any binary relation E on M for a natural number N is the set of valid Godel formulas of height N . (Contributed by AV, 13-Oct-2023)

Ref Expression
Assertion satfdmfmla MVEWNωdomMSatEN=FmlaN

Proof

Step Hyp Ref Expression
1 0ex V
2 1 1 pm3.2i VV
3 2 jctr MVEWMVEWVV
4 3 3adant3 MVEWNωMVEWVV
5 satfdm MVEWVVnωdomMSatEn=domSatn
6 4 5 syl MVEWNωnωdomMSatEn=domSatn
7 fveq2 n=NMSatEn=MSatEN
8 7 dmeqd n=NdomMSatEn=domMSatEN
9 fveq2 n=NSatn=SatN
10 9 dmeqd n=NdomSatn=domSatN
11 8 10 eqeq12d n=NdomMSatEn=domSatndomMSatEN=domSatN
12 11 rspcv NωnωdomMSatEn=domSatndomMSatEN=domSatN
13 12 3ad2ant3 MVEWNωnωdomMSatEn=domSatndomMSatEN=domSatN
14 6 13 mpd MVEWNωdomMSatEN=domSatN
15 elelsuc NωNsucω
16 15 3ad2ant3 MVEWNωNsucω
17 fmlafv NsucωFmlaN=domSatN
18 16 17 syl MVEWNωFmlaN=domSatN
19 14 18 eqtr4d MVEWNωdomMSatEN=FmlaN