| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqtr2 |
|
| 2 |
|
fvex |
|
| 3 |
|
fvex |
|
| 4 |
|
gonafv |
|
| 5 |
2 3 4
|
mp2an |
|
| 6 |
|
fvex |
|
| 7 |
|
fvex |
|
| 8 |
|
gonafv |
|
| 9 |
6 7 8
|
mp2an |
|
| 10 |
5 9
|
eqeq12i |
|
| 11 |
|
1oex |
|
| 12 |
|
opex |
|
| 13 |
11 12
|
opth |
|
| 14 |
2 3
|
opth |
|
| 15 |
14
|
anbi2i |
|
| 16 |
10 13 15
|
3bitri |
|
| 17 |
|
funfv1st2nd |
|
| 18 |
17
|
ex |
|
| 19 |
|
funfv1st2nd |
|
| 20 |
19
|
ex |
|
| 21 |
18 20
|
anim12d |
|
| 22 |
|
funfv1st2nd |
|
| 23 |
22
|
ex |
|
| 24 |
|
funfv1st2nd |
|
| 25 |
24
|
ex |
|
| 26 |
23 25
|
anim12d |
|
| 27 |
|
fveq2 |
|
| 28 |
27
|
eqcoms |
|
| 29 |
28
|
adantr |
|
| 30 |
29
|
eqeq1d |
|
| 31 |
|
fveq2 |
|
| 32 |
31
|
eqcoms |
|
| 33 |
32
|
adantl |
|
| 34 |
33
|
eqeq1d |
|
| 35 |
30 34
|
anbi12d |
|
| 36 |
35
|
anbi1d |
|
| 37 |
|
eqtr2 |
|
| 38 |
37
|
ad2ant2r |
|
| 39 |
|
eqtr2 |
|
| 40 |
39
|
ad2ant2l |
|
| 41 |
38 40
|
ineq12d |
|
| 42 |
36 41
|
biimtrdi |
|
| 43 |
42
|
com12 |
|
| 44 |
43
|
a1i |
|
| 45 |
21 26 44
|
syl2and |
|
| 46 |
45
|
expd |
|
| 47 |
46
|
3imp1 |
|
| 48 |
47
|
difeq2d |
|
| 49 |
48
|
adantr |
|
| 50 |
|
eqeq12 |
|
| 51 |
50
|
adantl |
|
| 52 |
49 51
|
mpbird |
|
| 53 |
52
|
exp43 |
|
| 54 |
53
|
adantld |
|
| 55 |
16 54
|
biimtrid |
|
| 56 |
1 55
|
syl5 |
|
| 57 |
56
|
expd |
|
| 58 |
57
|
com35 |
|
| 59 |
58
|
impd |
|
| 60 |
59
|
com24 |
|
| 61 |
60
|
impd |
|
| 62 |
61
|
3imp |
|