Description: Lemma for satffunlem1lem1 and satffunlem2lem1 . (Contributed by AV, 27-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | satffunlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2 | |
|
2 | fvex | |
|
3 | fvex | |
|
4 | gonafv | |
|
5 | 2 3 4 | mp2an | |
6 | fvex | |
|
7 | fvex | |
|
8 | gonafv | |
|
9 | 6 7 8 | mp2an | |
10 | 5 9 | eqeq12i | |
11 | 1oex | |
|
12 | opex | |
|
13 | 11 12 | opth | |
14 | 2 3 | opth | |
15 | 14 | anbi2i | |
16 | 10 13 15 | 3bitri | |
17 | funfv1st2nd | |
|
18 | 17 | ex | |
19 | funfv1st2nd | |
|
20 | 19 | ex | |
21 | 18 20 | anim12d | |
22 | funfv1st2nd | |
|
23 | 22 | ex | |
24 | funfv1st2nd | |
|
25 | 24 | ex | |
26 | 23 25 | anim12d | |
27 | fveq2 | |
|
28 | 27 | eqcoms | |
29 | 28 | adantr | |
30 | 29 | eqeq1d | |
31 | fveq2 | |
|
32 | 31 | eqcoms | |
33 | 32 | adantl | |
34 | 33 | eqeq1d | |
35 | 30 34 | anbi12d | |
36 | 35 | anbi1d | |
37 | eqtr2 | |
|
38 | 37 | ad2ant2r | |
39 | eqtr2 | |
|
40 | 39 | ad2ant2l | |
41 | 38 40 | ineq12d | |
42 | 36 41 | syl6bi | |
43 | 42 | com12 | |
44 | 43 | a1i | |
45 | 21 26 44 | syl2and | |
46 | 45 | expd | |
47 | 46 | 3imp1 | |
48 | 47 | difeq2d | |
49 | 48 | adantr | |
50 | eqeq12 | |
|
51 | 50 | adantl | |
52 | 49 51 | mpbird | |
53 | 52 | exp43 | |
54 | 53 | adantld | |
55 | 16 54 | biimtrid | |
56 | 1 55 | syl5 | |
57 | 56 | expd | |
58 | 57 | com35 | |
59 | 58 | impd | |
60 | 59 | com24 | |
61 | 60 | impd | |
62 | 61 | 3imp | |