Metamath Proof Explorer


Theorem satffunlem

Description: Lemma for satffunlem1lem1 and satffunlem2lem1 . (Contributed by AV, 27-Oct-2023)

Ref Expression
Assertion satffunlem FunZsZrZuZvZx=1sts𝑔1stry=Mω2nds2ndrx=1stu𝑔1stvw=Mω2ndu2ndvy=w

Proof

Step Hyp Ref Expression
1 eqtr2 x=1stu𝑔1stvx=1sts𝑔1str1stu𝑔1stv=1sts𝑔1str
2 fvex 1stuV
3 fvex 1stvV
4 gonafv 1stuV1stvV1stu𝑔1stv=1𝑜1stu1stv
5 2 3 4 mp2an 1stu𝑔1stv=1𝑜1stu1stv
6 fvex 1stsV
7 fvex 1strV
8 gonafv 1stsV1strV1sts𝑔1str=1𝑜1sts1str
9 6 7 8 mp2an 1sts𝑔1str=1𝑜1sts1str
10 5 9 eqeq12i 1stu𝑔1stv=1sts𝑔1str1𝑜1stu1stv=1𝑜1sts1str
11 1oex 1𝑜V
12 opex 1stu1stvV
13 11 12 opth 1𝑜1stu1stv=1𝑜1sts1str1𝑜=1𝑜1stu1stv=1sts1str
14 2 3 opth 1stu1stv=1sts1str1stu=1sts1stv=1str
15 14 anbi2i 1𝑜=1𝑜1stu1stv=1sts1str1𝑜=1𝑜1stu=1sts1stv=1str
16 10 13 15 3bitri 1stu𝑔1stv=1sts𝑔1str1𝑜=1𝑜1stu=1sts1stv=1str
17 funfv1st2nd FunZsZZ1sts=2nds
18 17 ex FunZsZZ1sts=2nds
19 funfv1st2nd FunZrZZ1str=2ndr
20 19 ex FunZrZZ1str=2ndr
21 18 20 anim12d FunZsZrZZ1sts=2ndsZ1str=2ndr
22 funfv1st2nd FunZuZZ1stu=2ndu
23 22 ex FunZuZZ1stu=2ndu
24 funfv1st2nd FunZvZZ1stv=2ndv
25 24 ex FunZvZZ1stv=2ndv
26 23 25 anim12d FunZuZvZZ1stu=2nduZ1stv=2ndv
27 fveq2 1sts=1stuZ1sts=Z1stu
28 27 eqcoms 1stu=1stsZ1sts=Z1stu
29 28 adantr 1stu=1sts1stv=1strZ1sts=Z1stu
30 29 eqeq1d 1stu=1sts1stv=1strZ1sts=2ndsZ1stu=2nds
31 fveq2 1str=1stvZ1str=Z1stv
32 31 eqcoms 1stv=1strZ1str=Z1stv
33 32 adantl 1stu=1sts1stv=1strZ1str=Z1stv
34 33 eqeq1d 1stu=1sts1stv=1strZ1str=2ndrZ1stv=2ndr
35 30 34 anbi12d 1stu=1sts1stv=1strZ1sts=2ndsZ1str=2ndrZ1stu=2ndsZ1stv=2ndr
36 35 anbi1d 1stu=1sts1stv=1strZ1sts=2ndsZ1str=2ndrZ1stu=2nduZ1stv=2ndvZ1stu=2ndsZ1stv=2ndrZ1stu=2nduZ1stv=2ndv
37 eqtr2 Z1stu=2ndsZ1stu=2ndu2nds=2ndu
38 37 ad2ant2r Z1stu=2ndsZ1stv=2ndrZ1stu=2nduZ1stv=2ndv2nds=2ndu
39 eqtr2 Z1stv=2ndrZ1stv=2ndv2ndr=2ndv
40 39 ad2ant2l Z1stu=2ndsZ1stv=2ndrZ1stu=2nduZ1stv=2ndv2ndr=2ndv
41 38 40 ineq12d Z1stu=2ndsZ1stv=2ndrZ1stu=2nduZ1stv=2ndv2nds2ndr=2ndu2ndv
42 36 41 syl6bi 1stu=1sts1stv=1strZ1sts=2ndsZ1str=2ndrZ1stu=2nduZ1stv=2ndv2nds2ndr=2ndu2ndv
43 42 com12 Z1sts=2ndsZ1str=2ndrZ1stu=2nduZ1stv=2ndv1stu=1sts1stv=1str2nds2ndr=2ndu2ndv
44 43 a1i FunZZ1sts=2ndsZ1str=2ndrZ1stu=2nduZ1stv=2ndv1stu=1sts1stv=1str2nds2ndr=2ndu2ndv
45 21 26 44 syl2and FunZsZrZuZvZ1stu=1sts1stv=1str2nds2ndr=2ndu2ndv
46 45 expd FunZsZrZuZvZ1stu=1sts1stv=1str2nds2ndr=2ndu2ndv
47 46 3imp1 FunZsZrZuZvZ1stu=1sts1stv=1str2nds2ndr=2ndu2ndv
48 47 difeq2d FunZsZrZuZvZ1stu=1sts1stv=1strMω2nds2ndr=Mω2ndu2ndv
49 48 adantr FunZsZrZuZvZ1stu=1sts1stv=1stry=Mω2nds2ndrw=Mω2ndu2ndvMω2nds2ndr=Mω2ndu2ndv
50 eqeq12 y=Mω2nds2ndrw=Mω2ndu2ndvy=wMω2nds2ndr=Mω2ndu2ndv
51 50 adantl FunZsZrZuZvZ1stu=1sts1stv=1stry=Mω2nds2ndrw=Mω2ndu2ndvy=wMω2nds2ndr=Mω2ndu2ndv
52 49 51 mpbird FunZsZrZuZvZ1stu=1sts1stv=1stry=Mω2nds2ndrw=Mω2ndu2ndvy=w
53 52 exp43 FunZsZrZuZvZ1stu=1sts1stv=1stry=Mω2nds2ndrw=Mω2ndu2ndvy=w
54 53 adantld FunZsZrZuZvZ1𝑜=1𝑜1stu=1sts1stv=1stry=Mω2nds2ndrw=Mω2ndu2ndvy=w
55 16 54 biimtrid FunZsZrZuZvZ1stu𝑔1stv=1sts𝑔1stry=Mω2nds2ndrw=Mω2ndu2ndvy=w
56 1 55 syl5 FunZsZrZuZvZx=1stu𝑔1stvx=1sts𝑔1stry=Mω2nds2ndrw=Mω2ndu2ndvy=w
57 56 expd FunZsZrZuZvZx=1stu𝑔1stvx=1sts𝑔1stry=Mω2nds2ndrw=Mω2ndu2ndvy=w
58 57 com35 FunZsZrZuZvZx=1stu𝑔1stvw=Mω2ndu2ndvy=Mω2nds2ndrx=1sts𝑔1stry=w
59 58 impd FunZsZrZuZvZx=1stu𝑔1stvw=Mω2ndu2ndvy=Mω2nds2ndrx=1sts𝑔1stry=w
60 59 com24 FunZsZrZuZvZx=1sts𝑔1stry=Mω2nds2ndrx=1stu𝑔1stvw=Mω2ndu2ndvy=w
61 60 impd FunZsZrZuZvZx=1sts𝑔1stry=Mω2nds2ndrx=1stu𝑔1stvw=Mω2ndu2ndvy=w
62 61 3imp FunZsZrZuZvZx=1sts𝑔1stry=Mω2nds2ndrx=1stu𝑔1stvw=Mω2ndu2ndvy=w