| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|
| 2 |
|
fveq2 |
|
| 3 |
1 2
|
oveqan12d |
|
| 4 |
3
|
eqeq2d |
|
| 5 |
|
fveq2 |
|
| 6 |
|
fveq2 |
|
| 7 |
5 6
|
ineqan12d |
|
| 8 |
7
|
difeq2d |
|
| 9 |
8
|
eqeq2d |
|
| 10 |
4 9
|
anbi12d |
|
| 11 |
10
|
cbvrexdva |
|
| 12 |
|
simpr |
|
| 13 |
1
|
adantr |
|
| 14 |
12 13
|
goaleq12d |
|
| 15 |
14
|
eqeq2d |
|
| 16 |
|
opeq1 |
|
| 17 |
16
|
sneqd |
|
| 18 |
|
sneq |
|
| 19 |
18
|
difeq2d |
|
| 20 |
19
|
reseq2d |
|
| 21 |
17 20
|
uneq12d |
|
| 22 |
21
|
adantl |
|
| 23 |
5
|
adantr |
|
| 24 |
22 23
|
eleq12d |
|
| 25 |
24
|
ralbidv |
|
| 26 |
25
|
rabbidv |
|
| 27 |
26
|
eqeq2d |
|
| 28 |
15 27
|
anbi12d |
|
| 29 |
28
|
cbvrexdva |
|
| 30 |
11 29
|
orbi12d |
|
| 31 |
30
|
cbvrexvw |
|
| 32 |
|
simp-4l |
|
| 33 |
|
simpr |
|
| 34 |
33
|
anim1i |
|
| 35 |
|
simpr |
|
| 36 |
35
|
anim1i |
|
| 37 |
36
|
ad2antrr |
|
| 38 |
|
satffunlem |
|
| 39 |
38
|
eqcomd |
|
| 40 |
39
|
3exp |
|
| 41 |
32 34 37 40
|
syl3anc |
|
| 42 |
41
|
rexlimdva |
|
| 43 |
|
eqeq1 |
|
| 44 |
|
df-goal |
|
| 45 |
|
fvex |
|
| 46 |
|
fvex |
|
| 47 |
|
gonafv |
|
| 48 |
45 46 47
|
mp2an |
|
| 49 |
44 48
|
eqeq12i |
|
| 50 |
|
2oex |
|
| 51 |
|
opex |
|
| 52 |
50 51
|
opth |
|
| 53 |
|
1one2o |
|
| 54 |
|
df-ne |
|
| 55 |
|
pm2.21 |
|
| 56 |
54 55
|
sylbi |
|
| 57 |
53 56
|
ax-mp |
|
| 58 |
57
|
eqcoms |
|
| 59 |
58
|
adantr |
|
| 60 |
52 59
|
sylbi |
|
| 61 |
49 60
|
sylbi |
|
| 62 |
43 61
|
biimtrdi |
|
| 63 |
62
|
impd |
|
| 64 |
63
|
adantr |
|
| 65 |
64
|
a1i |
|
| 66 |
65
|
rexlimdva |
|
| 67 |
42 66
|
jaod |
|
| 68 |
67
|
rexlimdva |
|
| 69 |
68
|
com23 |
|
| 70 |
69
|
rexlimdva |
|
| 71 |
|
eqeq1 |
|
| 72 |
|
df-goal |
|
| 73 |
|
fvex |
|
| 74 |
|
fvex |
|
| 75 |
|
gonafv |
|
| 76 |
73 74 75
|
mp2an |
|
| 77 |
72 76
|
eqeq12i |
|
| 78 |
|
opex |
|
| 79 |
50 78
|
opth |
|
| 80 |
|
pm2.21 |
|
| 81 |
54 80
|
sylbi |
|
| 82 |
53 81
|
ax-mp |
|
| 83 |
82
|
eqcoms |
|
| 84 |
83
|
adantr |
|
| 85 |
79 84
|
sylbi |
|
| 86 |
77 85
|
sylbi |
|
| 87 |
71 86
|
biimtrdi |
|
| 88 |
87
|
adantr |
|
| 89 |
88
|
com12 |
|
| 90 |
89
|
adantr |
|
| 91 |
90
|
a1i |
|
| 92 |
91
|
rexlimdva |
|
| 93 |
|
eqeq1 |
|
| 94 |
44 72
|
eqeq12i |
|
| 95 |
50 51
|
opth |
|
| 96 |
|
vex |
|
| 97 |
96 73
|
opth |
|
| 98 |
97
|
anbi2i |
|
| 99 |
94 95 98
|
3bitri |
|
| 100 |
93 99
|
bitrdi |
|
| 101 |
100
|
adantl |
|
| 102 |
|
funfv1st2nd |
|
| 103 |
102
|
ex |
|
| 104 |
|
funfv1st2nd |
|
| 105 |
104
|
ex |
|
| 106 |
|
fveqeq2 |
|
| 107 |
|
eqtr2 |
|
| 108 |
|
opeq1 |
|
| 109 |
108
|
sneqd |
|
| 110 |
|
sneq |
|
| 111 |
110
|
difeq2d |
|
| 112 |
111
|
reseq2d |
|
| 113 |
109 112
|
uneq12d |
|
| 114 |
113
|
eqcoms |
|
| 115 |
114
|
adantl |
|
| 116 |
|
simpl |
|
| 117 |
116
|
eqcomd |
|
| 118 |
115 117
|
eleq12d |
|
| 119 |
118
|
ralbidv |
|
| 120 |
119
|
rabbidv |
|
| 121 |
|
eqeq12 |
|
| 122 |
120 121
|
syl5ibrcom |
|
| 123 |
122
|
exp4b |
|
| 124 |
107 123
|
syl |
|
| 125 |
124
|
ex |
|
| 126 |
106 125
|
biimtrdi |
|
| 127 |
126
|
com24 |
|
| 128 |
127
|
impcom |
|
| 129 |
128
|
com13 |
|
| 130 |
105 129
|
syl6 |
|
| 131 |
130
|
com23 |
|
| 132 |
103 131
|
syld |
|
| 133 |
132
|
imp |
|
| 134 |
133
|
adantr |
|
| 135 |
134
|
imp |
|
| 136 |
135
|
adantld |
|
| 137 |
136
|
ad2antrr |
|
| 138 |
101 137
|
sylbid |
|
| 139 |
138
|
impd |
|
| 140 |
139
|
ex |
|
| 141 |
140
|
com34 |
|
| 142 |
141
|
impd |
|
| 143 |
142
|
rexlimdva |
|
| 144 |
92 143
|
jaod |
|
| 145 |
144
|
rexlimdva |
|
| 146 |
145
|
com23 |
|
| 147 |
146
|
rexlimdva |
|
| 148 |
70 147
|
jaod |
|
| 149 |
148
|
rexlimdva |
|
| 150 |
31 149
|
biimtrid |
|
| 151 |
150
|
impd |
|
| 152 |
151
|
alrimivv |
|
| 153 |
|
eqeq1 |
|
| 154 |
153
|
anbi2d |
|
| 155 |
154
|
rexbidv |
|
| 156 |
|
eqeq1 |
|
| 157 |
156
|
anbi2d |
|
| 158 |
157
|
rexbidv |
|
| 159 |
155 158
|
orbi12d |
|
| 160 |
159
|
rexbidv |
|
| 161 |
160
|
mo4 |
|
| 162 |
152 161
|
sylibr |
|
| 163 |
162
|
alrimiv |
|
| 164 |
|
funopab |
|
| 165 |
163 164
|
sylibr |
|