Metamath Proof Explorer


Theorem satffunlem1lem2

Description: Lemma 2 for satffunlem1 . (Contributed by AV, 23-Oct-2023)

Ref Expression
Assertion satffunlem1lem2 M V E W dom M Sat E dom x y | u M Sat E v M Sat E x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | j M i j f ω i 2 nd u =

Proof

Step Hyp Ref Expression
1 peano1 ω
2 satfdmfmla M V E W ω dom M Sat E = Fmla
3 1 2 mp3an3 M V E W dom M Sat E = Fmla
4 ovex M ω V
5 4 difexi M ω 2 nd u 2 nd v V
6 5 a1i M V E W u M Sat E v M Sat E M ω 2 nd u 2 nd v V
7 6 ralrimiva M V E W u M Sat E v M Sat E M ω 2 nd u 2 nd v V
8 4 rabex f M ω | j M i j f ω i 2 nd u V
9 8 a1i M V E W u M Sat E i ω f M ω | j M i j f ω i 2 nd u V
10 9 ralrimiva M V E W u M Sat E i ω f M ω | j M i j f ω i 2 nd u V
11 7 10 jca M V E W u M Sat E v M Sat E M ω 2 nd u 2 nd v V i ω f M ω | j M i j f ω i 2 nd u V
12 11 ralrimiva M V E W u M Sat E v M Sat E M ω 2 nd u 2 nd v V i ω f M ω | j M i j f ω i 2 nd u V
13 dmopab2rex u M Sat E v M Sat E M ω 2 nd u 2 nd v V i ω f M ω | j M i j f ω i 2 nd u V dom x y | u M Sat E v M Sat E x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | j M i j f ω i 2 nd u = x | u M Sat E v M Sat E x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u
14 12 13 syl M V E W dom x y | u M Sat E v M Sat E x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | j M i j f ω i 2 nd u = x | u M Sat E v M Sat E x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u
15 satfrel M V E W ω Rel M Sat E
16 1 15 mp3an3 M V E W Rel M Sat E
17 1stdm Rel M Sat E u M Sat E 1 st u dom M Sat E
18 16 17 sylan M V E W u M Sat E 1 st u dom M Sat E
19 2 eqcomd M V E W ω Fmla = dom M Sat E
20 1 19 mp3an3 M V E W Fmla = dom M Sat E
21 20 adantr M V E W u M Sat E Fmla = dom M Sat E
22 18 21 eleqtrrd M V E W u M Sat E 1 st u Fmla
23 22 adantr M V E W u M Sat E v M Sat E x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u 1 st u Fmla
24 oveq1 f = 1 st u f 𝑔 g = 1 st u 𝑔 g
25 24 eqeq2d f = 1 st u x = f 𝑔 g x = 1 st u 𝑔 g
26 25 rexbidv f = 1 st u g Fmla x = f 𝑔 g g Fmla x = 1 st u 𝑔 g
27 eqidd f = 1 st u i = i
28 id f = 1 st u f = 1 st u
29 27 28 goaleq12d f = 1 st u 𝑔 i f = 𝑔 i 1 st u
30 29 eqeq2d f = 1 st u x = 𝑔 i f x = 𝑔 i 1 st u
31 30 rexbidv f = 1 st u i ω x = 𝑔 i f i ω x = 𝑔 i 1 st u
32 26 31 orbi12d f = 1 st u g Fmla x = f 𝑔 g i ω x = 𝑔 i f g Fmla x = 1 st u 𝑔 g i ω x = 𝑔 i 1 st u
33 32 adantl M V E W u M Sat E v M Sat E x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u f = 1 st u g Fmla x = f 𝑔 g i ω x = 𝑔 i f g Fmla x = 1 st u 𝑔 g i ω x = 𝑔 i 1 st u
34 1stdm Rel M Sat E v M Sat E 1 st v dom M Sat E
35 16 34 sylan M V E W v M Sat E 1 st v dom M Sat E
36 20 adantr M V E W v M Sat E Fmla = dom M Sat E
37 35 36 eleqtrrd M V E W v M Sat E 1 st v Fmla
38 37 ad4ant13 M V E W u M Sat E v M Sat E x = 1 st u 𝑔 1 st v 1 st v Fmla
39 oveq2 g = 1 st v 1 st u 𝑔 g = 1 st u 𝑔 1 st v
40 39 eqeq2d g = 1 st v x = 1 st u 𝑔 g x = 1 st u 𝑔 1 st v
41 40 adantl M V E W u M Sat E v M Sat E x = 1 st u 𝑔 1 st v g = 1 st v x = 1 st u 𝑔 g x = 1 st u 𝑔 1 st v
42 simpr M V E W u M Sat E v M Sat E x = 1 st u 𝑔 1 st v x = 1 st u 𝑔 1 st v
43 38 41 42 rspcedvd M V E W u M Sat E v M Sat E x = 1 st u 𝑔 1 st v g Fmla x = 1 st u 𝑔 g
44 43 ex M V E W u M Sat E v M Sat E x = 1 st u 𝑔 1 st v g Fmla x = 1 st u 𝑔 g
45 44 rexlimdva M V E W u M Sat E v M Sat E x = 1 st u 𝑔 1 st v g Fmla x = 1 st u 𝑔 g
46 45 orim1d M V E W u M Sat E v M Sat E x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u g Fmla x = 1 st u 𝑔 g i ω x = 𝑔 i 1 st u
47 46 imp M V E W u M Sat E v M Sat E x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u g Fmla x = 1 st u 𝑔 g i ω x = 𝑔 i 1 st u
48 23 33 47 rspcedvd M V E W u M Sat E v M Sat E x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u f Fmla g Fmla x = f 𝑔 g i ω x = 𝑔 i f
49 48 ex M V E W u M Sat E v M Sat E x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u f Fmla g Fmla x = f 𝑔 g i ω x = 𝑔 i f
50 49 rexlimdva M V E W u M Sat E v M Sat E x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u f Fmla g Fmla x = f 𝑔 g i ω x = 𝑔 i f
51 releldm2 Rel M Sat E f dom M Sat E u M Sat E 1 st u = f
52 16 51 syl M V E W f dom M Sat E u M Sat E 1 st u = f
53 3 eleq2d M V E W f dom M Sat E f Fmla
54 52 53 bitr3d M V E W u M Sat E 1 st u = f f Fmla
55 r19.41v u M Sat E 1 st u = f g Fmla x = f 𝑔 g i ω x = 𝑔 i f u M Sat E 1 st u = f g Fmla x = f 𝑔 g i ω x = 𝑔 i f
56 oveq1 1 st u = f 1 st u 𝑔 g = f 𝑔 g
57 56 eqeq2d 1 st u = f x = 1 st u 𝑔 g x = f 𝑔 g
58 57 rexbidv 1 st u = f g Fmla x = 1 st u 𝑔 g g Fmla x = f 𝑔 g
59 eqidd 1 st u = f i = i
60 id 1 st u = f 1 st u = f
61 59 60 goaleq12d 1 st u = f 𝑔 i 1 st u = 𝑔 i f
62 61 eqeq2d 1 st u = f x = 𝑔 i 1 st u x = 𝑔 i f
63 62 rexbidv 1 st u = f i ω x = 𝑔 i 1 st u i ω x = 𝑔 i f
64 58 63 orbi12d 1 st u = f g Fmla x = 1 st u 𝑔 g i ω x = 𝑔 i 1 st u g Fmla x = f 𝑔 g i ω x = 𝑔 i f
65 64 adantl M V E W u M Sat E 1 st u = f g Fmla x = 1 st u 𝑔 g i ω x = 𝑔 i 1 st u g Fmla x = f 𝑔 g i ω x = 𝑔 i f
66 3 eqcomd M V E W Fmla = dom M Sat E
67 66 eleq2d M V E W g Fmla g dom M Sat E
68 releldm2 Rel M Sat E g dom M Sat E v M Sat E 1 st v = g
69 16 68 syl M V E W g dom M Sat E v M Sat E 1 st v = g
70 67 69 bitrd M V E W g Fmla v M Sat E 1 st v = g
71 r19.41v v M Sat E 1 st v = g x = 1 st u 𝑔 g v M Sat E 1 st v = g x = 1 st u 𝑔 g
72 39 eqcoms 1 st v = g 1 st u 𝑔 g = 1 st u 𝑔 1 st v
73 72 eqeq2d 1 st v = g x = 1 st u 𝑔 g x = 1 st u 𝑔 1 st v
74 73 biimpa 1 st v = g x = 1 st u 𝑔 g x = 1 st u 𝑔 1 st v
75 74 a1i M V E W 1 st v = g x = 1 st u 𝑔 g x = 1 st u 𝑔 1 st v
76 75 reximdv M V E W v M Sat E 1 st v = g x = 1 st u 𝑔 g v M Sat E x = 1 st u 𝑔 1 st v
77 71 76 syl5bir M V E W v M Sat E 1 st v = g x = 1 st u 𝑔 g v M Sat E x = 1 st u 𝑔 1 st v
78 77 expd M V E W v M Sat E 1 st v = g x = 1 st u 𝑔 g v M Sat E x = 1 st u 𝑔 1 st v
79 70 78 sylbid M V E W g Fmla x = 1 st u 𝑔 g v M Sat E x = 1 st u 𝑔 1 st v
80 79 rexlimdv M V E W g Fmla x = 1 st u 𝑔 g v M Sat E x = 1 st u 𝑔 1 st v
81 80 adantr M V E W u M Sat E g Fmla x = 1 st u 𝑔 g v M Sat E x = 1 st u 𝑔 1 st v
82 81 adantr M V E W u M Sat E 1 st u = f g Fmla x = 1 st u 𝑔 g v M Sat E x = 1 st u 𝑔 1 st v
83 82 orim1d M V E W u M Sat E 1 st u = f g Fmla x = 1 st u 𝑔 g i ω x = 𝑔 i 1 st u v M Sat E x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u
84 65 83 sylbird M V E W u M Sat E 1 st u = f g Fmla x = f 𝑔 g i ω x = 𝑔 i f v M Sat E x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u
85 84 expimpd M V E W u M Sat E 1 st u = f g Fmla x = f 𝑔 g i ω x = 𝑔 i f v M Sat E x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u
86 85 reximdva M V E W u M Sat E 1 st u = f g Fmla x = f 𝑔 g i ω x = 𝑔 i f u M Sat E v M Sat E x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u
87 55 86 syl5bir M V E W u M Sat E 1 st u = f g Fmla x = f 𝑔 g i ω x = 𝑔 i f u M Sat E v M Sat E x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u
88 87 expd M V E W u M Sat E 1 st u = f g Fmla x = f 𝑔 g i ω x = 𝑔 i f u M Sat E v M Sat E x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u
89 54 88 sylbird M V E W f Fmla g Fmla x = f 𝑔 g i ω x = 𝑔 i f u M Sat E v M Sat E x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u
90 89 rexlimdv M V E W f Fmla g Fmla x = f 𝑔 g i ω x = 𝑔 i f u M Sat E v M Sat E x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u
91 50 90 impbid M V E W u M Sat E v M Sat E x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u f Fmla g Fmla x = f 𝑔 g i ω x = 𝑔 i f
92 91 abbidv M V E W x | u M Sat E v M Sat E x = 1 st u 𝑔 1 st v i ω x = 𝑔 i 1 st u = x | f Fmla g Fmla x = f 𝑔 g i ω x = 𝑔 i f
93 14 92 eqtrd M V E W dom x y | u M Sat E v M Sat E x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | j M i j f ω i 2 nd u = x | f Fmla g Fmla x = f 𝑔 g i ω x = 𝑔 i f
94 3 93 ineq12d M V E W dom M Sat E dom x y | u M Sat E v M Sat E x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | j M i j f ω i 2 nd u = Fmla x | f Fmla g Fmla x = f 𝑔 g i ω x = 𝑔 i f
95 fmla0disjsuc Fmla x | f Fmla g Fmla x = f 𝑔 g i ω x = 𝑔 i f =
96 94 95 eqtrdi M V E W dom M Sat E dom x y | u M Sat E v M Sat E x = 1 st u 𝑔 1 st v y = M ω 2 nd u 2 nd v i ω x = 𝑔 i 1 st u y = f M ω | j M i j f ω i 2 nd u =