Description: The domain of an ordered pair class abstraction with two nested restricted existential quantifiers. (Contributed by AV, 23-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | dmopab2rex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom4 | |
|
2 | rexcom4 | |
|
3 | 1 2 | orbi12i | |
4 | 19.43 | |
|
5 | 3 4 | bitr4i | |
6 | 5 | rexbii | |
7 | rexcom4 | |
|
8 | 6 7 | bitri | |
9 | simpl | |
|
10 | 9 | exlimiv | |
11 | elisset | |
|
12 | ibar | |
|
13 | 12 | bicomd | |
14 | 13 | exbidv | |
15 | 11 14 | syl5ibrcom | |
16 | 10 15 | impbid2 | |
17 | 16 | ralrexbid | |
18 | 17 | adantr | |
19 | simpl | |
|
20 | 19 | exlimiv | |
21 | elisset | |
|
22 | ibar | |
|
23 | 22 | bicomd | |
24 | 23 | exbidv | |
25 | 21 24 | syl5ibrcom | |
26 | 20 25 | impbid2 | |
27 | 26 | ralrexbid | |
28 | 27 | adantl | |
29 | 18 28 | orbi12d | |
30 | 29 | ralrexbid | |
31 | 8 30 | bitr3id | |
32 | eqeq1 | |
|
33 | 32 | anbi1d | |
34 | 33 | rexbidv | |
35 | eqeq1 | |
|
36 | 35 | anbi1d | |
37 | 36 | rexbidv | |
38 | 34 37 | orbi12d | |
39 | 38 | rexbidv | |
40 | 39 | dmopabelb | |
41 | 40 | elv | |
42 | vex | |
|
43 | 32 | rexbidv | |
44 | 35 | rexbidv | |
45 | 43 44 | orbi12d | |
46 | 45 | rexbidv | |
47 | 42 46 | elab | |
48 | 31 41 47 | 3bitr4g | |
49 | 48 | eqrdv | |