| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexcom4 | ⊢ ( ∃ 𝑣  ∈  𝑉 ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  ∃ 𝑦 ∃ 𝑣  ∈  𝑉 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) ) | 
						
							| 2 |  | rexcom4 | ⊢ ( ∃ 𝑖  ∈  𝐼 ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 )  ↔  ∃ 𝑦 ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) | 
						
							| 3 | 1 2 | orbi12i | ⊢ ( ( ∃ 𝑣  ∈  𝑉 ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ↔  ( ∃ 𝑦 ∃ 𝑣  ∈  𝑉 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑦 ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) | 
						
							| 4 |  | 19.43 | ⊢ ( ∃ 𝑦 ( ∃ 𝑣  ∈  𝑉 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ↔  ( ∃ 𝑦 ∃ 𝑣  ∈  𝑉 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑦 ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) | 
						
							| 5 | 3 4 | bitr4i | ⊢ ( ( ∃ 𝑣  ∈  𝑉 ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ↔  ∃ 𝑦 ( ∃ 𝑣  ∈  𝑉 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) | 
						
							| 6 | 5 | rexbii | ⊢ ( ∃ 𝑢  ∈  𝑈 ( ∃ 𝑣  ∈  𝑉 ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ↔  ∃ 𝑢  ∈  𝑈 ∃ 𝑦 ( ∃ 𝑣  ∈  𝑉 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) | 
						
							| 7 |  | rexcom4 | ⊢ ( ∃ 𝑢  ∈  𝑈 ∃ 𝑦 ( ∃ 𝑣  ∈  𝑉 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ↔  ∃ 𝑦 ∃ 𝑢  ∈  𝑈 ( ∃ 𝑣  ∈  𝑉 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) | 
						
							| 8 | 6 7 | bitri | ⊢ ( ∃ 𝑢  ∈  𝑈 ( ∃ 𝑣  ∈  𝑉 ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ↔  ∃ 𝑦 ∃ 𝑢  ∈  𝑈 ( ∃ 𝑣  ∈  𝑉 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) | 
						
							| 9 |  | simpl | ⊢ ( ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  →  𝑧  =  𝐴 ) | 
						
							| 10 | 9 | exlimiv | ⊢ ( ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  →  𝑧  =  𝐴 ) | 
						
							| 11 |  | elisset | ⊢ ( 𝐵  ∈  𝑋  →  ∃ 𝑦 𝑦  =  𝐵 ) | 
						
							| 12 |  | ibar | ⊢ ( 𝑧  =  𝐴  →  ( 𝑦  =  𝐵  ↔  ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) ) ) | 
						
							| 13 | 12 | bicomd | ⊢ ( 𝑧  =  𝐴  →  ( ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  𝑦  =  𝐵 ) ) | 
						
							| 14 | 13 | exbidv | ⊢ ( 𝑧  =  𝐴  →  ( ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  ∃ 𝑦 𝑦  =  𝐵 ) ) | 
						
							| 15 | 11 14 | syl5ibrcom | ⊢ ( 𝐵  ∈  𝑋  →  ( 𝑧  =  𝐴  →  ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) ) ) | 
						
							| 16 | 10 15 | impbid2 | ⊢ ( 𝐵  ∈  𝑋  →  ( ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  𝑧  =  𝐴 ) ) | 
						
							| 17 | 16 | ralrexbid | ⊢ ( ∀ 𝑣  ∈  𝑉 𝐵  ∈  𝑋  →  ( ∃ 𝑣  ∈  𝑉 ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  ∃ 𝑣  ∈  𝑉 𝑧  =  𝐴 ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( ∀ 𝑣  ∈  𝑉 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 )  →  ( ∃ 𝑣  ∈  𝑉 ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  ∃ 𝑣  ∈  𝑉 𝑧  =  𝐴 ) ) | 
						
							| 19 |  | simpl | ⊢ ( ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 )  →  𝑧  =  𝐶 ) | 
						
							| 20 | 19 | exlimiv | ⊢ ( ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 )  →  𝑧  =  𝐶 ) | 
						
							| 21 |  | elisset | ⊢ ( 𝐷  ∈  𝑊  →  ∃ 𝑦 𝑦  =  𝐷 ) | 
						
							| 22 |  | ibar | ⊢ ( 𝑧  =  𝐶  →  ( 𝑦  =  𝐷  ↔  ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) | 
						
							| 23 | 22 | bicomd | ⊢ ( 𝑧  =  𝐶  →  ( ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 )  ↔  𝑦  =  𝐷 ) ) | 
						
							| 24 | 23 | exbidv | ⊢ ( 𝑧  =  𝐶  →  ( ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 )  ↔  ∃ 𝑦 𝑦  =  𝐷 ) ) | 
						
							| 25 | 21 24 | syl5ibrcom | ⊢ ( 𝐷  ∈  𝑊  →  ( 𝑧  =  𝐶  →  ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) | 
						
							| 26 | 20 25 | impbid2 | ⊢ ( 𝐷  ∈  𝑊  →  ( ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 )  ↔  𝑧  =  𝐶 ) ) | 
						
							| 27 | 26 | ralrexbid | ⊢ ( ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊  →  ( ∃ 𝑖  ∈  𝐼 ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 )  ↔  ∃ 𝑖  ∈  𝐼 𝑧  =  𝐶 ) ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( ∀ 𝑣  ∈  𝑉 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 )  →  ( ∃ 𝑖  ∈  𝐼 ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 )  ↔  ∃ 𝑖  ∈  𝐼 𝑧  =  𝐶 ) ) | 
						
							| 29 | 18 28 | orbi12d | ⊢ ( ( ∀ 𝑣  ∈  𝑉 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 )  →  ( ( ∃ 𝑣  ∈  𝑉 ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ↔  ( ∃ 𝑣  ∈  𝑉 𝑧  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑧  =  𝐶 ) ) ) | 
						
							| 30 | 29 | ralrexbid | ⊢ ( ∀ 𝑢  ∈  𝑈 ( ∀ 𝑣  ∈  𝑉 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 )  →  ( ∃ 𝑢  ∈  𝑈 ( ∃ 𝑣  ∈  𝑉 ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ↔  ∃ 𝑢  ∈  𝑈 ( ∃ 𝑣  ∈  𝑉 𝑧  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑧  =  𝐶 ) ) ) | 
						
							| 31 | 8 30 | bitr3id | ⊢ ( ∀ 𝑢  ∈  𝑈 ( ∀ 𝑣  ∈  𝑉 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 )  →  ( ∃ 𝑦 ∃ 𝑢  ∈  𝑈 ( ∃ 𝑣  ∈  𝑉 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ↔  ∃ 𝑢  ∈  𝑈 ( ∃ 𝑣  ∈  𝑉 𝑧  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑧  =  𝐶 ) ) ) | 
						
							| 32 |  | eqeq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  =  𝐴  ↔  𝑧  =  𝐴 ) ) | 
						
							| 33 | 32 | anbi1d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) ) ) | 
						
							| 34 | 33 | rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑣  ∈  𝑉 ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  ∃ 𝑣  ∈  𝑉 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) ) ) | 
						
							| 35 |  | eqeq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  =  𝐶  ↔  𝑧  =  𝐶 ) ) | 
						
							| 36 | 35 | anbi1d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑥  =  𝐶  ∧  𝑦  =  𝐷 )  ↔  ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) | 
						
							| 37 | 36 | rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑖  ∈  𝐼 ( 𝑥  =  𝐶  ∧  𝑦  =  𝐷 )  ↔  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) | 
						
							| 38 | 34 37 | orbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( ∃ 𝑣  ∈  𝑉 ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑥  =  𝐶  ∧  𝑦  =  𝐷 ) )  ↔  ( ∃ 𝑣  ∈  𝑉 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) ) | 
						
							| 39 | 38 | rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑢  ∈  𝑈 ( ∃ 𝑣  ∈  𝑉 ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑥  =  𝐶  ∧  𝑦  =  𝐷 ) )  ↔  ∃ 𝑢  ∈  𝑈 ( ∃ 𝑣  ∈  𝑉 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) ) | 
						
							| 40 | 39 | dmopabelb | ⊢ ( 𝑧  ∈  V  →  ( 𝑧  ∈  dom  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  𝑈 ( ∃ 𝑣  ∈  𝑉 ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑥  =  𝐶  ∧  𝑦  =  𝐷 ) ) }  ↔  ∃ 𝑦 ∃ 𝑢  ∈  𝑈 ( ∃ 𝑣  ∈  𝑉 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) ) | 
						
							| 41 | 40 | elv | ⊢ ( 𝑧  ∈  dom  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  𝑈 ( ∃ 𝑣  ∈  𝑉 ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑥  =  𝐶  ∧  𝑦  =  𝐷 ) ) }  ↔  ∃ 𝑦 ∃ 𝑢  ∈  𝑈 ( ∃ 𝑣  ∈  𝑉 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) | 
						
							| 42 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 43 | 32 | rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑣  ∈  𝑉 𝑥  =  𝐴  ↔  ∃ 𝑣  ∈  𝑉 𝑧  =  𝐴 ) ) | 
						
							| 44 | 35 | rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑖  ∈  𝐼 𝑥  =  𝐶  ↔  ∃ 𝑖  ∈  𝐼 𝑧  =  𝐶 ) ) | 
						
							| 45 | 43 44 | orbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( ∃ 𝑣  ∈  𝑉 𝑥  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑥  =  𝐶 )  ↔  ( ∃ 𝑣  ∈  𝑉 𝑧  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑧  =  𝐶 ) ) ) | 
						
							| 46 | 45 | rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑢  ∈  𝑈 ( ∃ 𝑣  ∈  𝑉 𝑥  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑥  =  𝐶 )  ↔  ∃ 𝑢  ∈  𝑈 ( ∃ 𝑣  ∈  𝑉 𝑧  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑧  =  𝐶 ) ) ) | 
						
							| 47 | 42 46 | elab | ⊢ ( 𝑧  ∈  { 𝑥  ∣  ∃ 𝑢  ∈  𝑈 ( ∃ 𝑣  ∈  𝑉 𝑥  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑥  =  𝐶 ) }  ↔  ∃ 𝑢  ∈  𝑈 ( ∃ 𝑣  ∈  𝑉 𝑧  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑧  =  𝐶 ) ) | 
						
							| 48 | 31 41 47 | 3bitr4g | ⊢ ( ∀ 𝑢  ∈  𝑈 ( ∀ 𝑣  ∈  𝑉 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 )  →  ( 𝑧  ∈  dom  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  𝑈 ( ∃ 𝑣  ∈  𝑉 ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑥  =  𝐶  ∧  𝑦  =  𝐷 ) ) }  ↔  𝑧  ∈  { 𝑥  ∣  ∃ 𝑢  ∈  𝑈 ( ∃ 𝑣  ∈  𝑉 𝑥  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑥  =  𝐶 ) } ) ) | 
						
							| 49 | 48 | eqrdv | ⊢ ( ∀ 𝑢  ∈  𝑈 ( ∀ 𝑣  ∈  𝑉 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 )  →  dom  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  𝑈 ( ∃ 𝑣  ∈  𝑉 ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑥  =  𝐶  ∧  𝑦  =  𝐷 ) ) }  =  { 𝑥  ∣  ∃ 𝑢  ∈  𝑈 ( ∃ 𝑣  ∈  𝑉 𝑥  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑥  =  𝐶 ) } ) |