| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano1 |  |-  (/) e. _om | 
						
							| 2 |  | satfdmfmla |  |-  ( ( M e. V /\ E e. W /\ (/) e. _om ) -> dom ( ( M Sat E ) ` (/) ) = ( Fmla ` (/) ) ) | 
						
							| 3 | 1 2 | mp3an3 |  |-  ( ( M e. V /\ E e. W ) -> dom ( ( M Sat E ) ` (/) ) = ( Fmla ` (/) ) ) | 
						
							| 4 |  | ovex |  |-  ( M ^m _om ) e. _V | 
						
							| 5 | 4 | difexi |  |-  ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) e. _V | 
						
							| 6 | 5 | a1i |  |-  ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ v e. ( ( M Sat E ) ` (/) ) ) -> ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) e. _V ) | 
						
							| 7 | 6 | ralrimiva |  |-  ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) -> A. v e. ( ( M Sat E ) ` (/) ) ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) e. _V ) | 
						
							| 8 | 4 | rabex |  |-  { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } e. _V | 
						
							| 9 | 8 | a1i |  |-  ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ i e. _om ) -> { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } e. _V ) | 
						
							| 10 | 9 | ralrimiva |  |-  ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) -> A. i e. _om { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } e. _V ) | 
						
							| 11 | 7 10 | jca |  |-  ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) -> ( A. v e. ( ( M Sat E ) ` (/) ) ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) e. _V /\ A. i e. _om { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } e. _V ) ) | 
						
							| 12 | 11 | ralrimiva |  |-  ( ( M e. V /\ E e. W ) -> A. u e. ( ( M Sat E ) ` (/) ) ( A. v e. ( ( M Sat E ) ` (/) ) ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) e. _V /\ A. i e. _om { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } e. _V ) ) | 
						
							| 13 |  | dmopab2rex |  |-  ( A. u e. ( ( M Sat E ) ` (/) ) ( A. v e. ( ( M Sat E ) ` (/) ) ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) e. _V /\ A. i e. _om { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } e. _V ) -> dom { <. x , y >. | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } = { x | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( M e. V /\ E e. W ) -> dom { <. x , y >. | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } = { x | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) | 
						
							| 15 |  | satfrel |  |-  ( ( M e. V /\ E e. W /\ (/) e. _om ) -> Rel ( ( M Sat E ) ` (/) ) ) | 
						
							| 16 | 1 15 | mp3an3 |  |-  ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` (/) ) ) | 
						
							| 17 |  | 1stdm |  |-  ( ( Rel ( ( M Sat E ) ` (/) ) /\ u e. ( ( M Sat E ) ` (/) ) ) -> ( 1st ` u ) e. dom ( ( M Sat E ) ` (/) ) ) | 
						
							| 18 | 16 17 | sylan |  |-  ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) -> ( 1st ` u ) e. dom ( ( M Sat E ) ` (/) ) ) | 
						
							| 19 | 2 | eqcomd |  |-  ( ( M e. V /\ E e. W /\ (/) e. _om ) -> ( Fmla ` (/) ) = dom ( ( M Sat E ) ` (/) ) ) | 
						
							| 20 | 1 19 | mp3an3 |  |-  ( ( M e. V /\ E e. W ) -> ( Fmla ` (/) ) = dom ( ( M Sat E ) ` (/) ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) -> ( Fmla ` (/) ) = dom ( ( M Sat E ) ` (/) ) ) | 
						
							| 22 | 18 21 | eleqtrrd |  |-  ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) -> ( 1st ` u ) e. ( Fmla ` (/) ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) -> ( 1st ` u ) e. ( Fmla ` (/) ) ) | 
						
							| 24 |  | oveq1 |  |-  ( f = ( 1st ` u ) -> ( f |g g ) = ( ( 1st ` u ) |g g ) ) | 
						
							| 25 | 24 | eqeq2d |  |-  ( f = ( 1st ` u ) -> ( x = ( f |g g ) <-> x = ( ( 1st ` u ) |g g ) ) ) | 
						
							| 26 | 25 | rexbidv |  |-  ( f = ( 1st ` u ) -> ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) <-> E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) ) ) | 
						
							| 27 |  | eqidd |  |-  ( f = ( 1st ` u ) -> i = i ) | 
						
							| 28 |  | id |  |-  ( f = ( 1st ` u ) -> f = ( 1st ` u ) ) | 
						
							| 29 | 27 28 | goaleq12d |  |-  ( f = ( 1st ` u ) -> A.g i f = A.g i ( 1st ` u ) ) | 
						
							| 30 | 29 | eqeq2d |  |-  ( f = ( 1st ` u ) -> ( x = A.g i f <-> x = A.g i ( 1st ` u ) ) ) | 
						
							| 31 | 30 | rexbidv |  |-  ( f = ( 1st ` u ) -> ( E. i e. _om x = A.g i f <-> E. i e. _om x = A.g i ( 1st ` u ) ) ) | 
						
							| 32 | 26 31 | orbi12d |  |-  ( f = ( 1st ` u ) -> ( ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) <-> ( E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) /\ f = ( 1st ` u ) ) -> ( ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) <-> ( E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) | 
						
							| 34 |  | 1stdm |  |-  ( ( Rel ( ( M Sat E ) ` (/) ) /\ v e. ( ( M Sat E ) ` (/) ) ) -> ( 1st ` v ) e. dom ( ( M Sat E ) ` (/) ) ) | 
						
							| 35 | 16 34 | sylan |  |-  ( ( ( M e. V /\ E e. W ) /\ v e. ( ( M Sat E ) ` (/) ) ) -> ( 1st ` v ) e. dom ( ( M Sat E ) ` (/) ) ) | 
						
							| 36 | 20 | adantr |  |-  ( ( ( M e. V /\ E e. W ) /\ v e. ( ( M Sat E ) ` (/) ) ) -> ( Fmla ` (/) ) = dom ( ( M Sat E ) ` (/) ) ) | 
						
							| 37 | 35 36 | eleqtrrd |  |-  ( ( ( M e. V /\ E e. W ) /\ v e. ( ( M Sat E ) ` (/) ) ) -> ( 1st ` v ) e. ( Fmla ` (/) ) ) | 
						
							| 38 | 37 | ad4ant13 |  |-  ( ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ v e. ( ( M Sat E ) ` (/) ) ) /\ x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> ( 1st ` v ) e. ( Fmla ` (/) ) ) | 
						
							| 39 |  | oveq2 |  |-  ( g = ( 1st ` v ) -> ( ( 1st ` u ) |g g ) = ( ( 1st ` u ) |g ( 1st ` v ) ) ) | 
						
							| 40 | 39 | eqeq2d |  |-  ( g = ( 1st ` v ) -> ( x = ( ( 1st ` u ) |g g ) <-> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 41 | 40 | adantl |  |-  ( ( ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ v e. ( ( M Sat E ) ` (/) ) ) /\ x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) /\ g = ( 1st ` v ) ) -> ( x = ( ( 1st ` u ) |g g ) <-> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 42 |  | simpr |  |-  ( ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ v e. ( ( M Sat E ) ` (/) ) ) /\ x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) | 
						
							| 43 | 38 41 42 | rspcedvd |  |-  ( ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ v e. ( ( M Sat E ) ` (/) ) ) /\ x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) ) | 
						
							| 44 | 43 | ex |  |-  ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ v e. ( ( M Sat E ) ` (/) ) ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) ) ) | 
						
							| 45 | 44 | rexlimdva |  |-  ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) -> ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) ) ) | 
						
							| 46 | 45 | orim1d |  |-  ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) -> ( ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> ( E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) | 
						
							| 47 | 46 | imp |  |-  ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) -> ( E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) | 
						
							| 48 | 23 33 47 | rspcedvd |  |-  ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) -> E. f e. ( Fmla ` (/) ) ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) | 
						
							| 49 | 48 | ex |  |-  ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) -> ( ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. f e. ( Fmla ` (/) ) ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) ) | 
						
							| 50 | 49 | rexlimdva |  |-  ( ( M e. V /\ E e. W ) -> ( E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. f e. ( Fmla ` (/) ) ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) ) | 
						
							| 51 |  | releldm2 |  |-  ( Rel ( ( M Sat E ) ` (/) ) -> ( f e. dom ( ( M Sat E ) ` (/) ) <-> E. u e. ( ( M Sat E ) ` (/) ) ( 1st ` u ) = f ) ) | 
						
							| 52 | 16 51 | syl |  |-  ( ( M e. V /\ E e. W ) -> ( f e. dom ( ( M Sat E ) ` (/) ) <-> E. u e. ( ( M Sat E ) ` (/) ) ( 1st ` u ) = f ) ) | 
						
							| 53 | 3 | eleq2d |  |-  ( ( M e. V /\ E e. W ) -> ( f e. dom ( ( M Sat E ) ` (/) ) <-> f e. ( Fmla ` (/) ) ) ) | 
						
							| 54 | 52 53 | bitr3d |  |-  ( ( M e. V /\ E e. W ) -> ( E. u e. ( ( M Sat E ) ` (/) ) ( 1st ` u ) = f <-> f e. ( Fmla ` (/) ) ) ) | 
						
							| 55 |  | r19.41v |  |-  ( E. u e. ( ( M Sat E ) ` (/) ) ( ( 1st ` u ) = f /\ ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) <-> ( E. u e. ( ( M Sat E ) ` (/) ) ( 1st ` u ) = f /\ ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) ) | 
						
							| 56 |  | oveq1 |  |-  ( ( 1st ` u ) = f -> ( ( 1st ` u ) |g g ) = ( f |g g ) ) | 
						
							| 57 | 56 | eqeq2d |  |-  ( ( 1st ` u ) = f -> ( x = ( ( 1st ` u ) |g g ) <-> x = ( f |g g ) ) ) | 
						
							| 58 | 57 | rexbidv |  |-  ( ( 1st ` u ) = f -> ( E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) <-> E. g e. ( Fmla ` (/) ) x = ( f |g g ) ) ) | 
						
							| 59 |  | eqidd |  |-  ( ( 1st ` u ) = f -> i = i ) | 
						
							| 60 |  | id |  |-  ( ( 1st ` u ) = f -> ( 1st ` u ) = f ) | 
						
							| 61 | 59 60 | goaleq12d |  |-  ( ( 1st ` u ) = f -> A.g i ( 1st ` u ) = A.g i f ) | 
						
							| 62 | 61 | eqeq2d |  |-  ( ( 1st ` u ) = f -> ( x = A.g i ( 1st ` u ) <-> x = A.g i f ) ) | 
						
							| 63 | 62 | rexbidv |  |-  ( ( 1st ` u ) = f -> ( E. i e. _om x = A.g i ( 1st ` u ) <-> E. i e. _om x = A.g i f ) ) | 
						
							| 64 | 58 63 | orbi12d |  |-  ( ( 1st ` u ) = f -> ( ( E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) ) | 
						
							| 65 | 64 | adantl |  |-  ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ ( 1st ` u ) = f ) -> ( ( E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) ) | 
						
							| 66 | 3 | eqcomd |  |-  ( ( M e. V /\ E e. W ) -> ( Fmla ` (/) ) = dom ( ( M Sat E ) ` (/) ) ) | 
						
							| 67 | 66 | eleq2d |  |-  ( ( M e. V /\ E e. W ) -> ( g e. ( Fmla ` (/) ) <-> g e. dom ( ( M Sat E ) ` (/) ) ) ) | 
						
							| 68 |  | releldm2 |  |-  ( Rel ( ( M Sat E ) ` (/) ) -> ( g e. dom ( ( M Sat E ) ` (/) ) <-> E. v e. ( ( M Sat E ) ` (/) ) ( 1st ` v ) = g ) ) | 
						
							| 69 | 16 68 | syl |  |-  ( ( M e. V /\ E e. W ) -> ( g e. dom ( ( M Sat E ) ` (/) ) <-> E. v e. ( ( M Sat E ) ` (/) ) ( 1st ` v ) = g ) ) | 
						
							| 70 | 67 69 | bitrd |  |-  ( ( M e. V /\ E e. W ) -> ( g e. ( Fmla ` (/) ) <-> E. v e. ( ( M Sat E ) ` (/) ) ( 1st ` v ) = g ) ) | 
						
							| 71 |  | r19.41v |  |-  ( E. v e. ( ( M Sat E ) ` (/) ) ( ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) <-> ( E. v e. ( ( M Sat E ) ` (/) ) ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) ) | 
						
							| 72 | 39 | eqcoms |  |-  ( ( 1st ` v ) = g -> ( ( 1st ` u ) |g g ) = ( ( 1st ` u ) |g ( 1st ` v ) ) ) | 
						
							| 73 | 72 | eqeq2d |  |-  ( ( 1st ` v ) = g -> ( x = ( ( 1st ` u ) |g g ) <-> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 74 | 73 | biimpa |  |-  ( ( ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) -> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) | 
						
							| 75 | 74 | a1i |  |-  ( ( M e. V /\ E e. W ) -> ( ( ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) -> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 76 | 75 | reximdv |  |-  ( ( M e. V /\ E e. W ) -> ( E. v e. ( ( M Sat E ) ` (/) ) ( ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) -> E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 77 | 71 76 | biimtrrid |  |-  ( ( M e. V /\ E e. W ) -> ( ( E. v e. ( ( M Sat E ) ` (/) ) ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) -> E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 78 | 77 | expd |  |-  ( ( M e. V /\ E e. W ) -> ( E. v e. ( ( M Sat E ) ` (/) ) ( 1st ` v ) = g -> ( x = ( ( 1st ` u ) |g g ) -> E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) ) | 
						
							| 79 | 70 78 | sylbid |  |-  ( ( M e. V /\ E e. W ) -> ( g e. ( Fmla ` (/) ) -> ( x = ( ( 1st ` u ) |g g ) -> E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) ) | 
						
							| 80 | 79 | rexlimdv |  |-  ( ( M e. V /\ E e. W ) -> ( E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) -> E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 81 | 80 | adantr |  |-  ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) -> ( E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) -> E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 82 | 81 | adantr |  |-  ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ ( 1st ` u ) = f ) -> ( E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) -> E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 83 | 82 | orim1d |  |-  ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ ( 1st ` u ) = f ) -> ( ( E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) | 
						
							| 84 | 65 83 | sylbird |  |-  ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ ( 1st ` u ) = f ) -> ( ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) -> ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) | 
						
							| 85 | 84 | expimpd |  |-  ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) -> ( ( ( 1st ` u ) = f /\ ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) -> ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) | 
						
							| 86 | 85 | reximdva |  |-  ( ( M e. V /\ E e. W ) -> ( E. u e. ( ( M Sat E ) ` (/) ) ( ( 1st ` u ) = f /\ ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) -> E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) | 
						
							| 87 | 55 86 | biimtrrid |  |-  ( ( M e. V /\ E e. W ) -> ( ( E. u e. ( ( M Sat E ) ` (/) ) ( 1st ` u ) = f /\ ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) -> E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) | 
						
							| 88 | 87 | expd |  |-  ( ( M e. V /\ E e. W ) -> ( E. u e. ( ( M Sat E ) ` (/) ) ( 1st ` u ) = f -> ( ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) -> E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) | 
						
							| 89 | 54 88 | sylbird |  |-  ( ( M e. V /\ E e. W ) -> ( f e. ( Fmla ` (/) ) -> ( ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) -> E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) | 
						
							| 90 | 89 | rexlimdv |  |-  ( ( M e. V /\ E e. W ) -> ( E. f e. ( Fmla ` (/) ) ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) -> E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) | 
						
							| 91 | 50 90 | impbid |  |-  ( ( M e. V /\ E e. W ) -> ( E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> E. f e. ( Fmla ` (/) ) ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) ) | 
						
							| 92 | 91 | abbidv |  |-  ( ( M e. V /\ E e. W ) -> { x | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } = { x | E. f e. ( Fmla ` (/) ) ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) } ) | 
						
							| 93 | 14 92 | eqtrd |  |-  ( ( M e. V /\ E e. W ) -> dom { <. x , y >. | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } = { x | E. f e. ( Fmla ` (/) ) ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) } ) | 
						
							| 94 | 3 93 | ineq12d |  |-  ( ( M e. V /\ E e. W ) -> ( dom ( ( M Sat E ) ` (/) ) i^i dom { <. x , y >. | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = ( ( Fmla ` (/) ) i^i { x | E. f e. ( Fmla ` (/) ) ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) } ) ) | 
						
							| 95 |  | fmla0disjsuc |  |-  ( ( Fmla ` (/) ) i^i { x | E. f e. ( Fmla ` (/) ) ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) } ) = (/) | 
						
							| 96 | 94 95 | eqtrdi |  |-  ( ( M e. V /\ E e. W ) -> ( dom ( ( M Sat E ) ` (/) ) i^i dom { <. x , y >. | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = (/) ) |