| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
|- ( B e. dom A -> B e. _V ) |
| 2 |
1
|
anim2i |
|- ( ( Rel A /\ B e. dom A ) -> ( Rel A /\ B e. _V ) ) |
| 3 |
|
id |
|- ( ( 1st ` x ) = B -> ( 1st ` x ) = B ) |
| 4 |
|
fvex |
|- ( 1st ` x ) e. _V |
| 5 |
3 4
|
eqeltrrdi |
|- ( ( 1st ` x ) = B -> B e. _V ) |
| 6 |
5
|
rexlimivw |
|- ( E. x e. A ( 1st ` x ) = B -> B e. _V ) |
| 7 |
6
|
anim2i |
|- ( ( Rel A /\ E. x e. A ( 1st ` x ) = B ) -> ( Rel A /\ B e. _V ) ) |
| 8 |
|
eldm2g |
|- ( B e. _V -> ( B e. dom A <-> E. y <. B , y >. e. A ) ) |
| 9 |
8
|
adantl |
|- ( ( Rel A /\ B e. _V ) -> ( B e. dom A <-> E. y <. B , y >. e. A ) ) |
| 10 |
|
df-rel |
|- ( Rel A <-> A C_ ( _V X. _V ) ) |
| 11 |
|
ssel |
|- ( A C_ ( _V X. _V ) -> ( x e. A -> x e. ( _V X. _V ) ) ) |
| 12 |
10 11
|
sylbi |
|- ( Rel A -> ( x e. A -> x e. ( _V X. _V ) ) ) |
| 13 |
12
|
imp |
|- ( ( Rel A /\ x e. A ) -> x e. ( _V X. _V ) ) |
| 14 |
|
op1steq |
|- ( x e. ( _V X. _V ) -> ( ( 1st ` x ) = B <-> E. y x = <. B , y >. ) ) |
| 15 |
13 14
|
syl |
|- ( ( Rel A /\ x e. A ) -> ( ( 1st ` x ) = B <-> E. y x = <. B , y >. ) ) |
| 16 |
15
|
rexbidva |
|- ( Rel A -> ( E. x e. A ( 1st ` x ) = B <-> E. x e. A E. y x = <. B , y >. ) ) |
| 17 |
16
|
adantr |
|- ( ( Rel A /\ B e. _V ) -> ( E. x e. A ( 1st ` x ) = B <-> E. x e. A E. y x = <. B , y >. ) ) |
| 18 |
|
rexcom4 |
|- ( E. x e. A E. y x = <. B , y >. <-> E. y E. x e. A x = <. B , y >. ) |
| 19 |
|
risset |
|- ( <. B , y >. e. A <-> E. x e. A x = <. B , y >. ) |
| 20 |
19
|
exbii |
|- ( E. y <. B , y >. e. A <-> E. y E. x e. A x = <. B , y >. ) |
| 21 |
18 20
|
bitr4i |
|- ( E. x e. A E. y x = <. B , y >. <-> E. y <. B , y >. e. A ) |
| 22 |
17 21
|
bitrdi |
|- ( ( Rel A /\ B e. _V ) -> ( E. x e. A ( 1st ` x ) = B <-> E. y <. B , y >. e. A ) ) |
| 23 |
9 22
|
bitr4d |
|- ( ( Rel A /\ B e. _V ) -> ( B e. dom A <-> E. x e. A ( 1st ` x ) = B ) ) |
| 24 |
2 7 23
|
pm5.21nd |
|- ( Rel A -> ( B e. dom A <-> E. x e. A ( 1st ` x ) = B ) ) |