| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
⊢ ( 𝐵 ∈ dom 𝐴 → 𝐵 ∈ V ) |
| 2 |
1
|
anim2i |
⊢ ( ( Rel 𝐴 ∧ 𝐵 ∈ dom 𝐴 ) → ( Rel 𝐴 ∧ 𝐵 ∈ V ) ) |
| 3 |
|
id |
⊢ ( ( 1st ‘ 𝑥 ) = 𝐵 → ( 1st ‘ 𝑥 ) = 𝐵 ) |
| 4 |
|
fvex |
⊢ ( 1st ‘ 𝑥 ) ∈ V |
| 5 |
3 4
|
eqeltrrdi |
⊢ ( ( 1st ‘ 𝑥 ) = 𝐵 → 𝐵 ∈ V ) |
| 6 |
5
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 1st ‘ 𝑥 ) = 𝐵 → 𝐵 ∈ V ) |
| 7 |
6
|
anim2i |
⊢ ( ( Rel 𝐴 ∧ ∃ 𝑥 ∈ 𝐴 ( 1st ‘ 𝑥 ) = 𝐵 ) → ( Rel 𝐴 ∧ 𝐵 ∈ V ) ) |
| 8 |
|
eldm2g |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ dom 𝐴 ↔ ∃ 𝑦 〈 𝐵 , 𝑦 〉 ∈ 𝐴 ) ) |
| 9 |
8
|
adantl |
⊢ ( ( Rel 𝐴 ∧ 𝐵 ∈ V ) → ( 𝐵 ∈ dom 𝐴 ↔ ∃ 𝑦 〈 𝐵 , 𝑦 〉 ∈ 𝐴 ) ) |
| 10 |
|
df-rel |
⊢ ( Rel 𝐴 ↔ 𝐴 ⊆ ( V × V ) ) |
| 11 |
|
ssel |
⊢ ( 𝐴 ⊆ ( V × V ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( V × V ) ) ) |
| 12 |
10 11
|
sylbi |
⊢ ( Rel 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( V × V ) ) ) |
| 13 |
12
|
imp |
⊢ ( ( Rel 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( V × V ) ) |
| 14 |
|
op1steq |
⊢ ( 𝑥 ∈ ( V × V ) → ( ( 1st ‘ 𝑥 ) = 𝐵 ↔ ∃ 𝑦 𝑥 = 〈 𝐵 , 𝑦 〉 ) ) |
| 15 |
13 14
|
syl |
⊢ ( ( Rel 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 1st ‘ 𝑥 ) = 𝐵 ↔ ∃ 𝑦 𝑥 = 〈 𝐵 , 𝑦 〉 ) ) |
| 16 |
15
|
rexbidva |
⊢ ( Rel 𝐴 → ( ∃ 𝑥 ∈ 𝐴 ( 1st ‘ 𝑥 ) = 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑥 = 〈 𝐵 , 𝑦 〉 ) ) |
| 17 |
16
|
adantr |
⊢ ( ( Rel 𝐴 ∧ 𝐵 ∈ V ) → ( ∃ 𝑥 ∈ 𝐴 ( 1st ‘ 𝑥 ) = 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑥 = 〈 𝐵 , 𝑦 〉 ) ) |
| 18 |
|
rexcom4 |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑥 = 〈 𝐵 , 𝑦 〉 ↔ ∃ 𝑦 ∃ 𝑥 ∈ 𝐴 𝑥 = 〈 𝐵 , 𝑦 〉 ) |
| 19 |
|
risset |
⊢ ( 〈 𝐵 , 𝑦 〉 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 𝑥 = 〈 𝐵 , 𝑦 〉 ) |
| 20 |
19
|
exbii |
⊢ ( ∃ 𝑦 〈 𝐵 , 𝑦 〉 ∈ 𝐴 ↔ ∃ 𝑦 ∃ 𝑥 ∈ 𝐴 𝑥 = 〈 𝐵 , 𝑦 〉 ) |
| 21 |
18 20
|
bitr4i |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑥 = 〈 𝐵 , 𝑦 〉 ↔ ∃ 𝑦 〈 𝐵 , 𝑦 〉 ∈ 𝐴 ) |
| 22 |
17 21
|
bitrdi |
⊢ ( ( Rel 𝐴 ∧ 𝐵 ∈ V ) → ( ∃ 𝑥 ∈ 𝐴 ( 1st ‘ 𝑥 ) = 𝐵 ↔ ∃ 𝑦 〈 𝐵 , 𝑦 〉 ∈ 𝐴 ) ) |
| 23 |
9 22
|
bitr4d |
⊢ ( ( Rel 𝐴 ∧ 𝐵 ∈ V ) → ( 𝐵 ∈ dom 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ( 1st ‘ 𝑥 ) = 𝐵 ) ) |
| 24 |
2 7 23
|
pm5.21nd |
⊢ ( Rel 𝐴 → ( 𝐵 ∈ dom 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ( 1st ‘ 𝑥 ) = 𝐵 ) ) |