Metamath Proof Explorer


Theorem satffunlem1lem2

Description: Lemma 2 for satffunlem1 . (Contributed by AV, 23-Oct-2023)

Ref Expression
Assertion satffunlem1lem2 ( ( 𝑀𝑉𝐸𝑊 ) → ( dom ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∩ dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑗𝑀 ( { ⟨ 𝑖 , 𝑗 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ) = ∅ )

Proof

Step Hyp Ref Expression
1 peano1 ∅ ∈ ω
2 satfdmfmla ( ( 𝑀𝑉𝐸𝑊 ∧ ∅ ∈ ω ) → dom ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) = ( Fmla ‘ ∅ ) )
3 1 2 mp3an3 ( ( 𝑀𝑉𝐸𝑊 ) → dom ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) = ( Fmla ‘ ∅ ) )
4 ovex ( 𝑀m ω ) ∈ V
5 4 difexi ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ∈ V
6 5 a1i ( ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) ∧ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) → ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ∈ V )
7 6 ralrimiva ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) → ∀ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ∈ V )
8 4 rabex { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑗𝑀 ( { ⟨ 𝑖 , 𝑗 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ∈ V
9 8 a1i ( ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) ∧ 𝑖 ∈ ω ) → { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑗𝑀 ( { ⟨ 𝑖 , 𝑗 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ∈ V )
10 9 ralrimiva ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) → ∀ 𝑖 ∈ ω { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑗𝑀 ( { ⟨ 𝑖 , 𝑗 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ∈ V )
11 7 10 jca ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) → ( ∀ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ∈ V ∧ ∀ 𝑖 ∈ ω { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑗𝑀 ( { ⟨ 𝑖 , 𝑗 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ∈ V ) )
12 11 ralrimiva ( ( 𝑀𝑉𝐸𝑊 ) → ∀ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∀ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ∈ V ∧ ∀ 𝑖 ∈ ω { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑗𝑀 ( { ⟨ 𝑖 , 𝑗 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ∈ V ) )
13 dmopab2rex ( ∀ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∀ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ∈ V ∧ ∀ 𝑖 ∈ ω { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑗𝑀 ( { ⟨ 𝑖 , 𝑗 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ∈ V ) → dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑗𝑀 ( { ⟨ 𝑖 , 𝑗 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } = { 𝑥 ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) } )
14 12 13 syl ( ( 𝑀𝑉𝐸𝑊 ) → dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑗𝑀 ( { ⟨ 𝑖 , 𝑗 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } = { 𝑥 ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) } )
15 satfrel ( ( 𝑀𝑉𝐸𝑊 ∧ ∅ ∈ ω ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) )
16 1 15 mp3an3 ( ( 𝑀𝑉𝐸𝑊 ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) )
17 1stdm ( ( Rel ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) → ( 1st𝑢 ) ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) )
18 16 17 sylan ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) → ( 1st𝑢 ) ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) )
19 2 eqcomd ( ( 𝑀𝑉𝐸𝑊 ∧ ∅ ∈ ω ) → ( Fmla ‘ ∅ ) = dom ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) )
20 1 19 mp3an3 ( ( 𝑀𝑉𝐸𝑊 ) → ( Fmla ‘ ∅ ) = dom ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) )
21 20 adantr ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) → ( Fmla ‘ ∅ ) = dom ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) )
22 18 21 eleqtrrd ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) → ( 1st𝑢 ) ∈ ( Fmla ‘ ∅ ) )
23 22 adantr ( ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) ∧ ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) → ( 1st𝑢 ) ∈ ( Fmla ‘ ∅ ) )
24 oveq1 ( 𝑓 = ( 1st𝑢 ) → ( 𝑓𝑔 𝑔 ) = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) )
25 24 eqeq2d ( 𝑓 = ( 1st𝑢 ) → ( 𝑥 = ( 𝑓𝑔 𝑔 ) ↔ 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) ) )
26 25 rexbidv ( 𝑓 = ( 1st𝑢 ) → ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑓𝑔 𝑔 ) ↔ ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) ) )
27 eqidd ( 𝑓 = ( 1st𝑢 ) → 𝑖 = 𝑖 )
28 id ( 𝑓 = ( 1st𝑢 ) → 𝑓 = ( 1st𝑢 ) )
29 27 28 goaleq12d ( 𝑓 = ( 1st𝑢 ) → ∀𝑔 𝑖 𝑓 = ∀𝑔 𝑖 ( 1st𝑢 ) )
30 29 eqeq2d ( 𝑓 = ( 1st𝑢 ) → ( 𝑥 = ∀𝑔 𝑖 𝑓𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) )
31 30 rexbidv ( 𝑓 = ( 1st𝑢 ) → ( ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ↔ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) )
32 26 31 orbi12d ( 𝑓 = ( 1st𝑢 ) → ( ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑓𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ↔ ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) )
33 32 adantl ( ( ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) ∧ ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) ∧ 𝑓 = ( 1st𝑢 ) ) → ( ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑓𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ↔ ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) )
34 1stdm ( ( Rel ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∧ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) → ( 1st𝑣 ) ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) )
35 16 34 sylan ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) → ( 1st𝑣 ) ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) )
36 20 adantr ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) → ( Fmla ‘ ∅ ) = dom ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) )
37 35 36 eleqtrrd ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) → ( 1st𝑣 ) ∈ ( Fmla ‘ ∅ ) )
38 37 ad4ant13 ( ( ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) ∧ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) ∧ 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ) → ( 1st𝑣 ) ∈ ( Fmla ‘ ∅ ) )
39 oveq2 ( 𝑔 = ( 1st𝑣 ) → ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) )
40 39 eqeq2d ( 𝑔 = ( 1st𝑣 ) → ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) ↔ 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ) )
41 40 adantl ( ( ( ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) ∧ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) ∧ 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ) ∧ 𝑔 = ( 1st𝑣 ) ) → ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) ↔ 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ) )
42 simpr ( ( ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) ∧ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) ∧ 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ) → 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) )
43 38 41 42 rspcedvd ( ( ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) ∧ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) ∧ 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ) → ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) )
44 43 ex ( ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) ∧ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) → ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) → ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) ) )
45 44 rexlimdva ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) → ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) → ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) ) )
46 45 orim1d ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) → ( ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) → ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) )
47 46 imp ( ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) ∧ ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) → ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) )
48 23 33 47 rspcedvd ( ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) ∧ ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) → ∃ 𝑓 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑓𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) )
49 48 ex ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) → ( ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) → ∃ 𝑓 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑓𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ) )
50 49 rexlimdva ( ( 𝑀𝑉𝐸𝑊 ) → ( ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) → ∃ 𝑓 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑓𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ) )
51 releldm2 ( Rel ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) → ( 𝑓 ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ↔ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 1st𝑢 ) = 𝑓 ) )
52 16 51 syl ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑓 ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ↔ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 1st𝑢 ) = 𝑓 ) )
53 3 eleq2d ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑓 ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ↔ 𝑓 ∈ ( Fmla ‘ ∅ ) ) )
54 52 53 bitr3d ( ( 𝑀𝑉𝐸𝑊 ) → ( ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 1st𝑢 ) = 𝑓𝑓 ∈ ( Fmla ‘ ∅ ) ) )
55 r19.41v ( ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ( 1st𝑢 ) = 𝑓 ∧ ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑓𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ) ↔ ( ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 1st𝑢 ) = 𝑓 ∧ ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑓𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ) )
56 oveq1 ( ( 1st𝑢 ) = 𝑓 → ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) = ( 𝑓𝑔 𝑔 ) )
57 56 eqeq2d ( ( 1st𝑢 ) = 𝑓 → ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) ↔ 𝑥 = ( 𝑓𝑔 𝑔 ) ) )
58 57 rexbidv ( ( 1st𝑢 ) = 𝑓 → ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) ↔ ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑓𝑔 𝑔 ) ) )
59 eqidd ( ( 1st𝑢 ) = 𝑓𝑖 = 𝑖 )
60 id ( ( 1st𝑢 ) = 𝑓 → ( 1st𝑢 ) = 𝑓 )
61 59 60 goaleq12d ( ( 1st𝑢 ) = 𝑓 → ∀𝑔 𝑖 ( 1st𝑢 ) = ∀𝑔 𝑖 𝑓 )
62 61 eqeq2d ( ( 1st𝑢 ) = 𝑓 → ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ↔ 𝑥 = ∀𝑔 𝑖 𝑓 ) )
63 62 rexbidv ( ( 1st𝑢 ) = 𝑓 → ( ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ↔ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) )
64 58 63 orbi12d ( ( 1st𝑢 ) = 𝑓 → ( ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ↔ ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑓𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ) )
65 64 adantl ( ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) ∧ ( 1st𝑢 ) = 𝑓 ) → ( ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ↔ ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑓𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ) )
66 3 eqcomd ( ( 𝑀𝑉𝐸𝑊 ) → ( Fmla ‘ ∅ ) = dom ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) )
67 66 eleq2d ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑔 ∈ ( Fmla ‘ ∅ ) ↔ 𝑔 ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) )
68 releldm2 ( Rel ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) → ( 𝑔 ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ↔ ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 1st𝑣 ) = 𝑔 ) )
69 16 68 syl ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑔 ∈ dom ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ↔ ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 1st𝑣 ) = 𝑔 ) )
70 67 69 bitrd ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑔 ∈ ( Fmla ‘ ∅ ) ↔ ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 1st𝑣 ) = 𝑔 ) )
71 r19.41v ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ( 1st𝑣 ) = 𝑔𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) ) ↔ ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 1st𝑣 ) = 𝑔𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) ) )
72 39 eqcoms ( ( 1st𝑣 ) = 𝑔 → ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) )
73 72 eqeq2d ( ( 1st𝑣 ) = 𝑔 → ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) ↔ 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ) )
74 73 biimpa ( ( ( 1st𝑣 ) = 𝑔𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) ) → 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) )
75 74 a1i ( ( 𝑀𝑉𝐸𝑊 ) → ( ( ( 1st𝑣 ) = 𝑔𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) ) → 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ) )
76 75 reximdv ( ( 𝑀𝑉𝐸𝑊 ) → ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ( 1st𝑣 ) = 𝑔𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) ) → ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ) )
77 71 76 syl5bir ( ( 𝑀𝑉𝐸𝑊 ) → ( ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 1st𝑣 ) = 𝑔𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) ) → ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ) )
78 77 expd ( ( 𝑀𝑉𝐸𝑊 ) → ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 1st𝑣 ) = 𝑔 → ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) → ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ) ) )
79 70 78 sylbid ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑔 ∈ ( Fmla ‘ ∅ ) → ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) → ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ) ) )
80 79 rexlimdv ( ( 𝑀𝑉𝐸𝑊 ) → ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) → ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ) )
81 80 adantr ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) → ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) → ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ) )
82 81 adantr ( ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) ∧ ( 1st𝑢 ) = 𝑓 ) → ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) → ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ) )
83 82 orim1d ( ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) ∧ ( 1st𝑢 ) = 𝑓 ) → ( ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) → ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) )
84 65 83 sylbird ( ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) ∧ ( 1st𝑢 ) = 𝑓 ) → ( ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑓𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) → ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) )
85 84 expimpd ( ( ( 𝑀𝑉𝐸𝑊 ) ∧ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) → ( ( ( 1st𝑢 ) = 𝑓 ∧ ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑓𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ) → ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) )
86 85 reximdva ( ( 𝑀𝑉𝐸𝑊 ) → ( ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ( 1st𝑢 ) = 𝑓 ∧ ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑓𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ) → ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) )
87 55 86 syl5bir ( ( 𝑀𝑉𝐸𝑊 ) → ( ( ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 1st𝑢 ) = 𝑓 ∧ ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑓𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ) → ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) )
88 87 expd ( ( 𝑀𝑉𝐸𝑊 ) → ( ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 1st𝑢 ) = 𝑓 → ( ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑓𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) → ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) ) )
89 54 88 sylbird ( ( 𝑀𝑉𝐸𝑊 ) → ( 𝑓 ∈ ( Fmla ‘ ∅ ) → ( ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑓𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) → ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) ) )
90 89 rexlimdv ( ( 𝑀𝑉𝐸𝑊 ) → ( ∃ 𝑓 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑓𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) → ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) )
91 50 90 impbid ( ( 𝑀𝑉𝐸𝑊 ) → ( ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ↔ ∃ 𝑓 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑓𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) ) )
92 91 abbidv ( ( 𝑀𝑉𝐸𝑊 ) → { 𝑥 ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) } = { 𝑥 ∣ ∃ 𝑓 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑓𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) } )
93 14 92 eqtrd ( ( 𝑀𝑉𝐸𝑊 ) → dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑗𝑀 ( { ⟨ 𝑖 , 𝑗 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } = { 𝑥 ∣ ∃ 𝑓 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑓𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) } )
94 3 93 ineq12d ( ( 𝑀𝑉𝐸𝑊 ) → ( dom ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∩ dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑗𝑀 ( { ⟨ 𝑖 , 𝑗 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ) = ( ( Fmla ‘ ∅ ) ∩ { 𝑥 ∣ ∃ 𝑓 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑓𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) } ) )
95 fmla0disjsuc ( ( Fmla ‘ ∅ ) ∩ { 𝑥 ∣ ∃ 𝑓 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑔 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑓𝑔 𝑔 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑓 ) } ) = ∅
96 94 95 eqtrdi ( ( 𝑀𝑉𝐸𝑊 ) → ( dom ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∩ dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∧ 𝑦 = ( ( 𝑀m ω ) ∖ ( ( 2nd𝑢 ) ∩ ( 2nd𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀m ω ) ∣ ∀ 𝑗𝑀 ( { ⟨ 𝑖 , 𝑗 ⟩ } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd𝑢 ) } ) ) } ) = ∅ )