| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmla0 | ⊢ ( Fmla ‘ ∅ )  =  { 𝑥  ∈  V  ∣  ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω 𝑥  =  ( 𝑗 ∈𝑔 𝑘 ) } | 
						
							| 2 |  | rabab | ⊢ { 𝑥  ∈  V  ∣  ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω 𝑥  =  ( 𝑗 ∈𝑔 𝑘 ) }  =  { 𝑥  ∣  ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω 𝑥  =  ( 𝑗 ∈𝑔 𝑘 ) } | 
						
							| 3 | 1 2 | eqtri | ⊢ ( Fmla ‘ ∅ )  =  { 𝑥  ∣  ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω 𝑥  =  ( 𝑗 ∈𝑔 𝑘 ) } | 
						
							| 4 | 3 | ineq1i | ⊢ ( ( Fmla ‘ ∅ )  ∩  { 𝑥  ∣  ∃ 𝑢  ∈  ( Fmla ‘ ∅ ) ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) } )  =  ( { 𝑥  ∣  ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω 𝑥  =  ( 𝑗 ∈𝑔 𝑘 ) }  ∩  { 𝑥  ∣  ∃ 𝑢  ∈  ( Fmla ‘ ∅ ) ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) } ) | 
						
							| 5 |  | inab | ⊢ ( { 𝑥  ∣  ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω 𝑥  =  ( 𝑗 ∈𝑔 𝑘 ) }  ∩  { 𝑥  ∣  ∃ 𝑢  ∈  ( Fmla ‘ ∅ ) ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) } )  =  { 𝑥  ∣  ( ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω 𝑥  =  ( 𝑗 ∈𝑔 𝑘 )  ∧  ∃ 𝑢  ∈  ( Fmla ‘ ∅ ) ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) ) } | 
						
							| 6 |  | goel | ⊢ ( ( 𝑗  ∈  ω  ∧  𝑘  ∈  ω )  →  ( 𝑗 ∈𝑔 𝑘 )  =  〈 ∅ ,  〈 𝑗 ,  𝑘 〉 〉 ) | 
						
							| 7 | 6 | eqeq2d | ⊢ ( ( 𝑗  ∈  ω  ∧  𝑘  ∈  ω )  →  ( 𝑥  =  ( 𝑗 ∈𝑔 𝑘 )  ↔  𝑥  =  〈 ∅ ,  〈 𝑗 ,  𝑘 〉 〉 ) ) | 
						
							| 8 |  | 1n0 | ⊢ 1o  ≠  ∅ | 
						
							| 9 | 8 | nesymi | ⊢ ¬  ∅  =  1o | 
						
							| 10 | 9 | intnanr | ⊢ ¬  ( ∅  =  1o  ∧  〈 𝑗 ,  𝑘 〉  =  〈 𝑢 ,  𝑣 〉 ) | 
						
							| 11 |  | gonafv | ⊢ ( ( 𝑢  ∈  V  ∧  𝑣  ∈  V )  →  ( 𝑢 ⊼𝑔 𝑣 )  =  〈 1o ,  〈 𝑢 ,  𝑣 〉 〉 ) | 
						
							| 12 | 11 | el2v | ⊢ ( 𝑢 ⊼𝑔 𝑣 )  =  〈 1o ,  〈 𝑢 ,  𝑣 〉 〉 | 
						
							| 13 | 12 | eqeq2i | ⊢ ( 〈 ∅ ,  〈 𝑗 ,  𝑘 〉 〉  =  ( 𝑢 ⊼𝑔 𝑣 )  ↔  〈 ∅ ,  〈 𝑗 ,  𝑘 〉 〉  =  〈 1o ,  〈 𝑢 ,  𝑣 〉 〉 ) | 
						
							| 14 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 15 |  | opex | ⊢ 〈 𝑗 ,  𝑘 〉  ∈  V | 
						
							| 16 | 14 15 | opth | ⊢ ( 〈 ∅ ,  〈 𝑗 ,  𝑘 〉 〉  =  〈 1o ,  〈 𝑢 ,  𝑣 〉 〉  ↔  ( ∅  =  1o  ∧  〈 𝑗 ,  𝑘 〉  =  〈 𝑢 ,  𝑣 〉 ) ) | 
						
							| 17 | 13 16 | bitri | ⊢ ( 〈 ∅ ,  〈 𝑗 ,  𝑘 〉 〉  =  ( 𝑢 ⊼𝑔 𝑣 )  ↔  ( ∅  =  1o  ∧  〈 𝑗 ,  𝑘 〉  =  〈 𝑢 ,  𝑣 〉 ) ) | 
						
							| 18 | 10 17 | mtbir | ⊢ ¬  〈 ∅ ,  〈 𝑗 ,  𝑘 〉 〉  =  ( 𝑢 ⊼𝑔 𝑣 ) | 
						
							| 19 |  | eqeq1 | ⊢ ( 𝑥  =  〈 ∅ ,  〈 𝑗 ,  𝑘 〉 〉  →  ( 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ↔  〈 ∅ ,  〈 𝑗 ,  𝑘 〉 〉  =  ( 𝑢 ⊼𝑔 𝑣 ) ) ) | 
						
							| 20 | 18 19 | mtbiri | ⊢ ( 𝑥  =  〈 ∅ ,  〈 𝑗 ,  𝑘 〉 〉  →  ¬  𝑥  =  ( 𝑢 ⊼𝑔 𝑣 ) ) | 
						
							| 21 | 7 20 | biimtrdi | ⊢ ( ( 𝑗  ∈  ω  ∧  𝑘  ∈  ω )  →  ( 𝑥  =  ( 𝑗 ∈𝑔 𝑘 )  →  ¬  𝑥  =  ( 𝑢 ⊼𝑔 𝑣 ) ) ) | 
						
							| 22 | 21 | imp | ⊢ ( ( ( 𝑗  ∈  ω  ∧  𝑘  ∈  ω )  ∧  𝑥  =  ( 𝑗 ∈𝑔 𝑘 ) )  →  ¬  𝑥  =  ( 𝑢 ⊼𝑔 𝑣 ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( ( 𝑗  ∈  ω  ∧  𝑘  ∈  ω )  ∧  𝑥  =  ( 𝑗 ∈𝑔 𝑘 ) )  ∧  𝑢  ∈  ( Fmla ‘ ∅ ) )  →  ¬  𝑥  =  ( 𝑢 ⊼𝑔 𝑣 ) ) | 
						
							| 24 | 23 | ralrimivw | ⊢ ( ( ( ( 𝑗  ∈  ω  ∧  𝑘  ∈  ω )  ∧  𝑥  =  ( 𝑗 ∈𝑔 𝑘 ) )  ∧  𝑢  ∈  ( Fmla ‘ ∅ ) )  →  ∀ 𝑣  ∈  ( Fmla ‘ ∅ ) ¬  𝑥  =  ( 𝑢 ⊼𝑔 𝑣 ) ) | 
						
							| 25 |  | 2on0 | ⊢ 2o  ≠  ∅ | 
						
							| 26 | 25 | nesymi | ⊢ ¬  ∅  =  2o | 
						
							| 27 | 26 | orci | ⊢ ( ¬  ∅  =  2o  ∨  ¬  〈 𝑗 ,  𝑘 〉  =  〈 𝑖 ,  𝑢 〉 ) | 
						
							| 28 | 14 15 | opth | ⊢ ( 〈 ∅ ,  〈 𝑗 ,  𝑘 〉 〉  =  〈 2o ,  〈 𝑖 ,  𝑢 〉 〉  ↔  ( ∅  =  2o  ∧  〈 𝑗 ,  𝑘 〉  =  〈 𝑖 ,  𝑢 〉 ) ) | 
						
							| 29 | 28 | notbii | ⊢ ( ¬  〈 ∅ ,  〈 𝑗 ,  𝑘 〉 〉  =  〈 2o ,  〈 𝑖 ,  𝑢 〉 〉  ↔  ¬  ( ∅  =  2o  ∧  〈 𝑗 ,  𝑘 〉  =  〈 𝑖 ,  𝑢 〉 ) ) | 
						
							| 30 |  | ianor | ⊢ ( ¬  ( ∅  =  2o  ∧  〈 𝑗 ,  𝑘 〉  =  〈 𝑖 ,  𝑢 〉 )  ↔  ( ¬  ∅  =  2o  ∨  ¬  〈 𝑗 ,  𝑘 〉  =  〈 𝑖 ,  𝑢 〉 ) ) | 
						
							| 31 | 29 30 | bitri | ⊢ ( ¬  〈 ∅ ,  〈 𝑗 ,  𝑘 〉 〉  =  〈 2o ,  〈 𝑖 ,  𝑢 〉 〉  ↔  ( ¬  ∅  =  2o  ∨  ¬  〈 𝑗 ,  𝑘 〉  =  〈 𝑖 ,  𝑢 〉 ) ) | 
						
							| 32 | 27 31 | mpbir | ⊢ ¬  〈 ∅ ,  〈 𝑗 ,  𝑘 〉 〉  =  〈 2o ,  〈 𝑖 ,  𝑢 〉 〉 | 
						
							| 33 |  | eqeq1 | ⊢ ( 𝑥  =  〈 ∅ ,  〈 𝑗 ,  𝑘 〉 〉  →  ( 𝑥  =  ∀𝑔 𝑖 𝑢  ↔  〈 ∅ ,  〈 𝑗 ,  𝑘 〉 〉  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 34 |  | df-goal | ⊢ ∀𝑔 𝑖 𝑢  =  〈 2o ,  〈 𝑖 ,  𝑢 〉 〉 | 
						
							| 35 | 34 | eqeq2i | ⊢ ( 〈 ∅ ,  〈 𝑗 ,  𝑘 〉 〉  =  ∀𝑔 𝑖 𝑢  ↔  〈 ∅ ,  〈 𝑗 ,  𝑘 〉 〉  =  〈 2o ,  〈 𝑖 ,  𝑢 〉 〉 ) | 
						
							| 36 | 33 35 | bitrdi | ⊢ ( 𝑥  =  〈 ∅ ,  〈 𝑗 ,  𝑘 〉 〉  →  ( 𝑥  =  ∀𝑔 𝑖 𝑢  ↔  〈 ∅ ,  〈 𝑗 ,  𝑘 〉 〉  =  〈 2o ,  〈 𝑖 ,  𝑢 〉 〉 ) ) | 
						
							| 37 | 32 36 | mtbiri | ⊢ ( 𝑥  =  〈 ∅ ,  〈 𝑗 ,  𝑘 〉 〉  →  ¬  𝑥  =  ∀𝑔 𝑖 𝑢 ) | 
						
							| 38 | 7 37 | biimtrdi | ⊢ ( ( 𝑗  ∈  ω  ∧  𝑘  ∈  ω )  →  ( 𝑥  =  ( 𝑗 ∈𝑔 𝑘 )  →  ¬  𝑥  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 39 | 38 | imp | ⊢ ( ( ( 𝑗  ∈  ω  ∧  𝑘  ∈  ω )  ∧  𝑥  =  ( 𝑗 ∈𝑔 𝑘 ) )  →  ¬  𝑥  =  ∀𝑔 𝑖 𝑢 ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( ( ( 𝑗  ∈  ω  ∧  𝑘  ∈  ω )  ∧  𝑥  =  ( 𝑗 ∈𝑔 𝑘 ) )  ∧  𝑢  ∈  ( Fmla ‘ ∅ ) )  →  ¬  𝑥  =  ∀𝑔 𝑖 𝑢 ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( ( ( ( 𝑗  ∈  ω  ∧  𝑘  ∈  ω )  ∧  𝑥  =  ( 𝑗 ∈𝑔 𝑘 ) )  ∧  𝑢  ∈  ( Fmla ‘ ∅ ) )  ∧  𝑖  ∈  ω )  →  ¬  𝑥  =  ∀𝑔 𝑖 𝑢 ) | 
						
							| 42 | 41 | ralrimiva | ⊢ ( ( ( ( 𝑗  ∈  ω  ∧  𝑘  ∈  ω )  ∧  𝑥  =  ( 𝑗 ∈𝑔 𝑘 ) )  ∧  𝑢  ∈  ( Fmla ‘ ∅ ) )  →  ∀ 𝑖  ∈  ω ¬  𝑥  =  ∀𝑔 𝑖 𝑢 ) | 
						
							| 43 | 24 42 | jca | ⊢ ( ( ( ( 𝑗  ∈  ω  ∧  𝑘  ∈  ω )  ∧  𝑥  =  ( 𝑗 ∈𝑔 𝑘 ) )  ∧  𝑢  ∈  ( Fmla ‘ ∅ ) )  →  ( ∀ 𝑣  ∈  ( Fmla ‘ ∅ ) ¬  𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∧  ∀ 𝑖  ∈  ω ¬  𝑥  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 44 | 43 | ralrimiva | ⊢ ( ( ( 𝑗  ∈  ω  ∧  𝑘  ∈  ω )  ∧  𝑥  =  ( 𝑗 ∈𝑔 𝑘 ) )  →  ∀ 𝑢  ∈  ( Fmla ‘ ∅ ) ( ∀ 𝑣  ∈  ( Fmla ‘ ∅ ) ¬  𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∧  ∀ 𝑖  ∈  ω ¬  𝑥  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 45 |  | ralnex | ⊢ ( ∀ 𝑣  ∈  ( Fmla ‘ ∅ ) ¬  𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ↔  ¬  ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 ) ) | 
						
							| 46 |  | ralnex | ⊢ ( ∀ 𝑖  ∈  ω ¬  𝑥  =  ∀𝑔 𝑖 𝑢  ↔  ¬  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) | 
						
							| 47 | 45 46 | anbi12i | ⊢ ( ( ∀ 𝑣  ∈  ( Fmla ‘ ∅ ) ¬  𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∧  ∀ 𝑖  ∈  ω ¬  𝑥  =  ∀𝑔 𝑖 𝑢 )  ↔  ( ¬  ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∧  ¬  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 48 |  | ioran | ⊢ ( ¬  ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 )  ↔  ( ¬  ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∧  ¬  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 49 | 47 48 | bitr4i | ⊢ ( ( ∀ 𝑣  ∈  ( Fmla ‘ ∅ ) ¬  𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∧  ∀ 𝑖  ∈  ω ¬  𝑥  =  ∀𝑔 𝑖 𝑢 )  ↔  ¬  ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 50 | 49 | ralbii | ⊢ ( ∀ 𝑢  ∈  ( Fmla ‘ ∅ ) ( ∀ 𝑣  ∈  ( Fmla ‘ ∅ ) ¬  𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∧  ∀ 𝑖  ∈  ω ¬  𝑥  =  ∀𝑔 𝑖 𝑢 )  ↔  ∀ 𝑢  ∈  ( Fmla ‘ ∅ ) ¬  ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 51 |  | ralnex | ⊢ ( ∀ 𝑢  ∈  ( Fmla ‘ ∅ ) ¬  ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 )  ↔  ¬  ∃ 𝑢  ∈  ( Fmla ‘ ∅ ) ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 52 | 50 51 | bitri | ⊢ ( ∀ 𝑢  ∈  ( Fmla ‘ ∅ ) ( ∀ 𝑣  ∈  ( Fmla ‘ ∅ ) ¬  𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∧  ∀ 𝑖  ∈  ω ¬  𝑥  =  ∀𝑔 𝑖 𝑢 )  ↔  ¬  ∃ 𝑢  ∈  ( Fmla ‘ ∅ ) ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 53 | 44 52 | sylib | ⊢ ( ( ( 𝑗  ∈  ω  ∧  𝑘  ∈  ω )  ∧  𝑥  =  ( 𝑗 ∈𝑔 𝑘 ) )  →  ¬  ∃ 𝑢  ∈  ( Fmla ‘ ∅ ) ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 54 | 53 | ex | ⊢ ( ( 𝑗  ∈  ω  ∧  𝑘  ∈  ω )  →  ( 𝑥  =  ( 𝑗 ∈𝑔 𝑘 )  →  ¬  ∃ 𝑢  ∈  ( Fmla ‘ ∅ ) ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) ) ) | 
						
							| 55 | 54 | rexlimdva | ⊢ ( 𝑗  ∈  ω  →  ( ∃ 𝑘  ∈  ω 𝑥  =  ( 𝑗 ∈𝑔 𝑘 )  →  ¬  ∃ 𝑢  ∈  ( Fmla ‘ ∅ ) ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) ) ) | 
						
							| 56 | 55 | rexlimiv | ⊢ ( ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω 𝑥  =  ( 𝑗 ∈𝑔 𝑘 )  →  ¬  ∃ 𝑢  ∈  ( Fmla ‘ ∅ ) ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 57 | 56 | imori | ⊢ ( ¬  ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω 𝑥  =  ( 𝑗 ∈𝑔 𝑘 )  ∨  ¬  ∃ 𝑢  ∈  ( Fmla ‘ ∅ ) ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 58 |  | ianor | ⊢ ( ¬  ( ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω 𝑥  =  ( 𝑗 ∈𝑔 𝑘 )  ∧  ∃ 𝑢  ∈  ( Fmla ‘ ∅ ) ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) )  ↔  ( ¬  ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω 𝑥  =  ( 𝑗 ∈𝑔 𝑘 )  ∨  ¬  ∃ 𝑢  ∈  ( Fmla ‘ ∅ ) ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) ) ) | 
						
							| 59 | 57 58 | mpbir | ⊢ ¬  ( ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω 𝑥  =  ( 𝑗 ∈𝑔 𝑘 )  ∧  ∃ 𝑢  ∈  ( Fmla ‘ ∅ ) ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 60 | 59 | abf | ⊢ { 𝑥  ∣  ( ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω 𝑥  =  ( 𝑗 ∈𝑔 𝑘 )  ∧  ∃ 𝑢  ∈  ( Fmla ‘ ∅ ) ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) ) }  =  ∅ | 
						
							| 61 | 5 60 | eqtri | ⊢ ( { 𝑥  ∣  ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω 𝑥  =  ( 𝑗 ∈𝑔 𝑘 ) }  ∩  { 𝑥  ∣  ∃ 𝑢  ∈  ( Fmla ‘ ∅ ) ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) } )  =  ∅ | 
						
							| 62 | 4 61 | eqtri | ⊢ ( ( Fmla ‘ ∅ )  ∩  { 𝑥  ∣  ∃ 𝑢  ∈  ( Fmla ‘ ∅ ) ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) } )  =  ∅ |