| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 2 |  | eqeq1 | ⊢ ( 𝑥  =  𝑓  →  ( 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ↔  𝑓  =  ( 𝑢 ⊼𝑔 𝑣 ) ) ) | 
						
							| 3 | 2 | rexbidv | ⊢ ( 𝑥  =  𝑓  →  ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ↔  ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 ) ) ) | 
						
							| 4 |  | eqeq1 | ⊢ ( 𝑥  =  𝑓  →  ( 𝑥  =  ∀𝑔 𝑖 𝑢  ↔  𝑓  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 5 | 4 | rexbidv | ⊢ ( 𝑥  =  𝑓  →  ( ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢  ↔  ∃ 𝑖  ∈  ω 𝑓  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 6 | 3 5 | orbi12d | ⊢ ( 𝑥  =  𝑓  →  ( ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 )  ↔  ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑓  =  ∀𝑔 𝑖 𝑢 ) ) ) | 
						
							| 7 | 6 | rexbidv | ⊢ ( 𝑥  =  𝑓  →  ( ∃ 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 )  ↔  ∃ 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑓  =  ∀𝑔 𝑖 𝑢 ) ) ) | 
						
							| 8 | 2 | 2rexbidv | ⊢ ( 𝑥  =  𝑓  →  ( ∃ 𝑢  ∈  ( Fmla ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ↔  ∃ 𝑢  ∈  ( Fmla ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 ) ) ) | 
						
							| 9 | 7 8 | orbi12d | ⊢ ( 𝑥  =  𝑓  →  ( ( ∃ 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 ) )  ↔  ( ∃ 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑓  =  ∀𝑔 𝑖 𝑢 )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 ) ) ) ) | 
						
							| 10 | 1 9 | elab | ⊢ ( 𝑓  ∈  { 𝑥  ∣  ( ∃ 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 ) ) }  ↔  ( ∃ 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑓  =  ∀𝑔 𝑖 𝑢 )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 ) ) ) | 
						
							| 11 |  | gonar | ⊢ ( ( 𝑁  ∈  ω  ∧  ( 𝑢 ⊼𝑔 𝑣 )  ∈  ( Fmla ‘ 𝑁 ) )  →  ( 𝑢  ∈  ( Fmla ‘ 𝑁 )  ∧  𝑣  ∈  ( Fmla ‘ 𝑁 ) ) ) | 
						
							| 12 |  | elndif | ⊢ ( 𝑢  ∈  ( Fmla ‘ 𝑁 )  →  ¬  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝑢  ∈  ( Fmla ‘ 𝑁 )  ∧  𝑣  ∈  ( Fmla ‘ 𝑁 ) )  →  ¬  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ) | 
						
							| 14 | 13 | intnanrd | ⊢ ( ( 𝑢  ∈  ( Fmla ‘ 𝑁 )  ∧  𝑣  ∈  ( Fmla ‘ 𝑁 ) )  →  ¬  ( 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ∧  𝑣  ∈  ( Fmla ‘ suc  𝑁 ) ) ) | 
						
							| 15 | 11 14 | syl | ⊢ ( ( 𝑁  ∈  ω  ∧  ( 𝑢 ⊼𝑔 𝑣 )  ∈  ( Fmla ‘ 𝑁 ) )  →  ¬  ( 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ∧  𝑣  ∈  ( Fmla ‘ suc  𝑁 ) ) ) | 
						
							| 16 | 15 | ex | ⊢ ( 𝑁  ∈  ω  →  ( ( 𝑢 ⊼𝑔 𝑣 )  ∈  ( Fmla ‘ 𝑁 )  →  ¬  ( 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ∧  𝑣  ∈  ( Fmla ‘ suc  𝑁 ) ) ) ) | 
						
							| 17 | 16 | con2d | ⊢ ( 𝑁  ∈  ω  →  ( ( 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ∧  𝑣  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ¬  ( 𝑢 ⊼𝑔 𝑣 )  ∈  ( Fmla ‘ 𝑁 ) ) ) | 
						
							| 18 | 17 | impl | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  ∧  𝑣  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ¬  ( 𝑢 ⊼𝑔 𝑣 )  ∈  ( Fmla ‘ 𝑁 ) ) | 
						
							| 19 |  | elneeldif | ⊢ ( ( 𝑎  ∈  ( Fmla ‘ 𝑁 )  ∧  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  →  𝑎  ≠  𝑢 ) | 
						
							| 20 | 19 | necomd | ⊢ ( ( 𝑎  ∈  ( Fmla ‘ 𝑁 )  ∧  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  →  𝑢  ≠  𝑎 ) | 
						
							| 21 | 20 | ancoms | ⊢ ( ( 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ∧  𝑎  ∈  ( Fmla ‘ 𝑁 ) )  →  𝑢  ≠  𝑎 ) | 
						
							| 22 | 21 | neneqd | ⊢ ( ( 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ∧  𝑎  ∈  ( Fmla ‘ 𝑁 ) )  →  ¬  𝑢  =  𝑎 ) | 
						
							| 23 | 22 | orcd | ⊢ ( ( 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ∧  𝑎  ∈  ( Fmla ‘ 𝑁 ) )  →  ( ¬  𝑢  =  𝑎  ∨  ¬  𝑣  =  𝑏 ) ) | 
						
							| 24 |  | ianor | ⊢ ( ¬  ( 𝑢  =  𝑎  ∧  𝑣  =  𝑏 )  ↔  ( ¬  𝑢  =  𝑎  ∨  ¬  𝑣  =  𝑏 ) ) | 
						
							| 25 |  | vex | ⊢ 𝑢  ∈  V | 
						
							| 26 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 27 | 25 26 | opth | ⊢ ( 〈 𝑢 ,  𝑣 〉  =  〈 𝑎 ,  𝑏 〉  ↔  ( 𝑢  =  𝑎  ∧  𝑣  =  𝑏 ) ) | 
						
							| 28 | 24 27 | xchnxbir | ⊢ ( ¬  〈 𝑢 ,  𝑣 〉  =  〈 𝑎 ,  𝑏 〉  ↔  ( ¬  𝑢  =  𝑎  ∨  ¬  𝑣  =  𝑏 ) ) | 
						
							| 29 | 23 28 | sylibr | ⊢ ( ( 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ∧  𝑎  ∈  ( Fmla ‘ 𝑁 ) )  →  ¬  〈 𝑢 ,  𝑣 〉  =  〈 𝑎 ,  𝑏 〉 ) | 
						
							| 30 | 29 | olcd | ⊢ ( ( 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ∧  𝑎  ∈  ( Fmla ‘ 𝑁 ) )  →  ( ¬  1o  =  1o  ∨  ¬  〈 𝑢 ,  𝑣 〉  =  〈 𝑎 ,  𝑏 〉 ) ) | 
						
							| 31 |  | ianor | ⊢ ( ¬  ( 1o  =  1o  ∧  〈 𝑢 ,  𝑣 〉  =  〈 𝑎 ,  𝑏 〉 )  ↔  ( ¬  1o  =  1o  ∨  ¬  〈 𝑢 ,  𝑣 〉  =  〈 𝑎 ,  𝑏 〉 ) ) | 
						
							| 32 |  | gonafv | ⊢ ( ( 𝑢  ∈  V  ∧  𝑣  ∈  V )  →  ( 𝑢 ⊼𝑔 𝑣 )  =  〈 1o ,  〈 𝑢 ,  𝑣 〉 〉 ) | 
						
							| 33 | 32 | el2v | ⊢ ( 𝑢 ⊼𝑔 𝑣 )  =  〈 1o ,  〈 𝑢 ,  𝑣 〉 〉 | 
						
							| 34 |  | gonafv | ⊢ ( ( 𝑎  ∈  V  ∧  𝑏  ∈  V )  →  ( 𝑎 ⊼𝑔 𝑏 )  =  〈 1o ,  〈 𝑎 ,  𝑏 〉 〉 ) | 
						
							| 35 | 34 | el2v | ⊢ ( 𝑎 ⊼𝑔 𝑏 )  =  〈 1o ,  〈 𝑎 ,  𝑏 〉 〉 | 
						
							| 36 | 33 35 | eqeq12i | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 )  ↔  〈 1o ,  〈 𝑢 ,  𝑣 〉 〉  =  〈 1o ,  〈 𝑎 ,  𝑏 〉 〉 ) | 
						
							| 37 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 38 |  | opex | ⊢ 〈 𝑢 ,  𝑣 〉  ∈  V | 
						
							| 39 | 37 38 | opth | ⊢ ( 〈 1o ,  〈 𝑢 ,  𝑣 〉 〉  =  〈 1o ,  〈 𝑎 ,  𝑏 〉 〉  ↔  ( 1o  =  1o  ∧  〈 𝑢 ,  𝑣 〉  =  〈 𝑎 ,  𝑏 〉 ) ) | 
						
							| 40 | 36 39 | bitri | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 )  ↔  ( 1o  =  1o  ∧  〈 𝑢 ,  𝑣 〉  =  〈 𝑎 ,  𝑏 〉 ) ) | 
						
							| 41 | 31 40 | xchnxbir | ⊢ ( ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 )  ↔  ( ¬  1o  =  1o  ∨  ¬  〈 𝑢 ,  𝑣 〉  =  〈 𝑎 ,  𝑏 〉 ) ) | 
						
							| 42 | 30 41 | sylibr | ⊢ ( ( 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ∧  𝑎  ∈  ( Fmla ‘ 𝑁 ) )  →  ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 ) ) | 
						
							| 43 | 42 | ralrimivw | ⊢ ( ( 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ∧  𝑎  ∈  ( Fmla ‘ 𝑁 ) )  →  ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 ) ) | 
						
							| 44 | 43 | ralrimiva | ⊢ ( 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  →  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 ) ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  →  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 ) ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  ∧  𝑣  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 ) ) | 
						
							| 47 |  | gonanegoal | ⊢ ( 𝑢 ⊼𝑔 𝑣 )  ≠  ∀𝑔 𝑗 𝑎 | 
						
							| 48 | 47 | neii | ⊢ ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎 | 
						
							| 49 | 48 | a1i | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  ∧  𝑣  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎 ) | 
						
							| 50 | 49 | ralrimivw | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  ∧  𝑣  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ∀ 𝑗  ∈  ω ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎 ) | 
						
							| 51 | 50 | ralrimivw | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  ∧  𝑣  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ∀ 𝑗  ∈  ω ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎 ) | 
						
							| 52 |  | r19.26 | ⊢ ( ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎 )  ↔  ( ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ∀ 𝑗  ∈  ω ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎 ) ) | 
						
							| 53 | 46 51 52 | sylanbrc | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  ∧  𝑣  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎 ) ) | 
						
							| 54 | 18 53 | jca | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  ∧  𝑣  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( ¬  ( 𝑢 ⊼𝑔 𝑣 )  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎 ) ) ) | 
						
							| 55 |  | eleq1 | ⊢ ( 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 )  →  ( 𝑓  ∈  ( Fmla ‘ 𝑁 )  ↔  ( 𝑢 ⊼𝑔 𝑣 )  ∈  ( Fmla ‘ 𝑁 ) ) ) | 
						
							| 56 | 55 | notbid | ⊢ ( 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 )  →  ( ¬  𝑓  ∈  ( Fmla ‘ 𝑁 )  ↔  ¬  ( 𝑢 ⊼𝑔 𝑣 )  ∈  ( Fmla ‘ 𝑁 ) ) ) | 
						
							| 57 |  | eqeq1 | ⊢ ( 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 )  →  ( 𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ↔  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 ) ) ) | 
						
							| 58 | 57 | notbid | ⊢ ( 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 )  →  ( ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ↔  ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 ) ) ) | 
						
							| 59 | 58 | ralbidv | ⊢ ( 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 )  →  ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ↔  ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 ) ) ) | 
						
							| 60 |  | eqeq1 | ⊢ ( 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 )  →  ( 𝑓  =  ∀𝑔 𝑗 𝑎  ↔  ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎 ) ) | 
						
							| 61 | 60 | notbid | ⊢ ( 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 )  →  ( ¬  𝑓  =  ∀𝑔 𝑗 𝑎  ↔  ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎 ) ) | 
						
							| 62 | 61 | ralbidv | ⊢ ( 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 )  →  ( ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎  ↔  ∀ 𝑗  ∈  ω ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎 ) ) | 
						
							| 63 | 59 62 | anbi12d | ⊢ ( 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 )  →  ( ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 )  ↔  ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎 ) ) ) | 
						
							| 64 | 63 | ralbidv | ⊢ ( 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 )  →  ( ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 )  ↔  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎 ) ) ) | 
						
							| 65 | 56 64 | anbi12d | ⊢ ( 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 )  →  ( ( ¬  𝑓  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) )  ↔  ( ¬  ( 𝑢 ⊼𝑔 𝑣 )  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎 ) ) ) ) | 
						
							| 66 | 54 65 | syl5ibrcom | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  ∧  𝑣  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 )  →  ( ¬  𝑓  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) ) ) | 
						
							| 67 | 66 | rexlimdva | ⊢ ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  →  ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 )  →  ( ¬  𝑓  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) ) ) | 
						
							| 68 |  | goalr | ⊢ ( ( 𝑁  ∈  ω  ∧  ∀𝑔 𝑖 𝑢  ∈  ( Fmla ‘ 𝑁 ) )  →  𝑢  ∈  ( Fmla ‘ 𝑁 ) ) | 
						
							| 69 | 68 12 | syl | ⊢ ( ( 𝑁  ∈  ω  ∧  ∀𝑔 𝑖 𝑢  ∈  ( Fmla ‘ 𝑁 ) )  →  ¬  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ) | 
						
							| 70 | 69 | ex | ⊢ ( 𝑁  ∈  ω  →  ( ∀𝑔 𝑖 𝑢  ∈  ( Fmla ‘ 𝑁 )  →  ¬  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ) ) | 
						
							| 71 | 70 | con2d | ⊢ ( 𝑁  ∈  ω  →  ( 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  →  ¬  ∀𝑔 𝑖 𝑢  ∈  ( Fmla ‘ 𝑁 ) ) ) | 
						
							| 72 | 71 | imp | ⊢ ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  →  ¬  ∀𝑔 𝑖 𝑢  ∈  ( Fmla ‘ 𝑁 ) ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  ∧  𝑖  ∈  ω )  →  ¬  ∀𝑔 𝑖 𝑢  ∈  ( Fmla ‘ 𝑁 ) ) | 
						
							| 74 |  | gonanegoal | ⊢ ( 𝑎 ⊼𝑔 𝑏 )  ≠  ∀𝑔 𝑖 𝑢 | 
						
							| 75 | 74 | nesymi | ⊢ ¬  ∀𝑔 𝑖 𝑢  =  ( 𝑎 ⊼𝑔 𝑏 ) | 
						
							| 76 | 75 | a1i | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  ∧  𝑖  ∈  ω )  →  ¬  ∀𝑔 𝑖 𝑢  =  ( 𝑎 ⊼𝑔 𝑏 ) ) | 
						
							| 77 | 76 | ralrimivw | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  ∧  𝑖  ∈  ω )  →  ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ∀𝑔 𝑖 𝑢  =  ( 𝑎 ⊼𝑔 𝑏 ) ) | 
						
							| 78 | 77 | ralrimivw | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  ∧  𝑖  ∈  ω )  →  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ∀𝑔 𝑖 𝑢  =  ( 𝑎 ⊼𝑔 𝑏 ) ) | 
						
							| 79 | 22 | olcd | ⊢ ( ( 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ∧  𝑎  ∈  ( Fmla ‘ 𝑁 ) )  →  ( ¬  𝑖  =  𝑗  ∨  ¬  𝑢  =  𝑎 ) ) | 
						
							| 80 |  | ianor | ⊢ ( ¬  ( 𝑖  =  𝑗  ∧  𝑢  =  𝑎 )  ↔  ( ¬  𝑖  =  𝑗  ∨  ¬  𝑢  =  𝑎 ) ) | 
						
							| 81 |  | vex | ⊢ 𝑖  ∈  V | 
						
							| 82 | 81 25 | opth | ⊢ ( 〈 𝑖 ,  𝑢 〉  =  〈 𝑗 ,  𝑎 〉  ↔  ( 𝑖  =  𝑗  ∧  𝑢  =  𝑎 ) ) | 
						
							| 83 | 80 82 | xchnxbir | ⊢ ( ¬  〈 𝑖 ,  𝑢 〉  =  〈 𝑗 ,  𝑎 〉  ↔  ( ¬  𝑖  =  𝑗  ∨  ¬  𝑢  =  𝑎 ) ) | 
						
							| 84 | 79 83 | sylibr | ⊢ ( ( 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ∧  𝑎  ∈  ( Fmla ‘ 𝑁 ) )  →  ¬  〈 𝑖 ,  𝑢 〉  =  〈 𝑗 ,  𝑎 〉 ) | 
						
							| 85 | 84 | olcd | ⊢ ( ( 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ∧  𝑎  ∈  ( Fmla ‘ 𝑁 ) )  →  ( ¬  2o  =  2o  ∨  ¬  〈 𝑖 ,  𝑢 〉  =  〈 𝑗 ,  𝑎 〉 ) ) | 
						
							| 86 |  | ianor | ⊢ ( ¬  ( 2o  =  2o  ∧  〈 𝑖 ,  𝑢 〉  =  〈 𝑗 ,  𝑎 〉 )  ↔  ( ¬  2o  =  2o  ∨  ¬  〈 𝑖 ,  𝑢 〉  =  〈 𝑗 ,  𝑎 〉 ) ) | 
						
							| 87 |  | 2oex | ⊢ 2o  ∈  V | 
						
							| 88 |  | opex | ⊢ 〈 𝑖 ,  𝑢 〉  ∈  V | 
						
							| 89 | 87 88 | opth | ⊢ ( 〈 2o ,  〈 𝑖 ,  𝑢 〉 〉  =  〈 2o ,  〈 𝑗 ,  𝑎 〉 〉  ↔  ( 2o  =  2o  ∧  〈 𝑖 ,  𝑢 〉  =  〈 𝑗 ,  𝑎 〉 ) ) | 
						
							| 90 | 86 89 | xchnxbir | ⊢ ( ¬  〈 2o ,  〈 𝑖 ,  𝑢 〉 〉  =  〈 2o ,  〈 𝑗 ,  𝑎 〉 〉  ↔  ( ¬  2o  =  2o  ∨  ¬  〈 𝑖 ,  𝑢 〉  =  〈 𝑗 ,  𝑎 〉 ) ) | 
						
							| 91 |  | df-goal | ⊢ ∀𝑔 𝑖 𝑢  =  〈 2o ,  〈 𝑖 ,  𝑢 〉 〉 | 
						
							| 92 |  | df-goal | ⊢ ∀𝑔 𝑗 𝑎  =  〈 2o ,  〈 𝑗 ,  𝑎 〉 〉 | 
						
							| 93 | 91 92 | eqeq12i | ⊢ ( ∀𝑔 𝑖 𝑢  =  ∀𝑔 𝑗 𝑎  ↔  〈 2o ,  〈 𝑖 ,  𝑢 〉 〉  =  〈 2o ,  〈 𝑗 ,  𝑎 〉 〉 ) | 
						
							| 94 | 90 93 | xchnxbir | ⊢ ( ¬  ∀𝑔 𝑖 𝑢  =  ∀𝑔 𝑗 𝑎  ↔  ( ¬  2o  =  2o  ∨  ¬  〈 𝑖 ,  𝑢 〉  =  〈 𝑗 ,  𝑎 〉 ) ) | 
						
							| 95 | 85 94 | sylibr | ⊢ ( ( 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ∧  𝑎  ∈  ( Fmla ‘ 𝑁 ) )  →  ¬  ∀𝑔 𝑖 𝑢  =  ∀𝑔 𝑗 𝑎 ) | 
						
							| 96 | 95 | ralrimivw | ⊢ ( ( 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ∧  𝑎  ∈  ( Fmla ‘ 𝑁 ) )  →  ∀ 𝑗  ∈  ω ¬  ∀𝑔 𝑖 𝑢  =  ∀𝑔 𝑗 𝑎 ) | 
						
							| 97 | 96 | ralrimiva | ⊢ ( 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  →  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ∀ 𝑗  ∈  ω ¬  ∀𝑔 𝑖 𝑢  =  ∀𝑔 𝑗 𝑎 ) | 
						
							| 98 | 97 | adantl | ⊢ ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  →  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ∀ 𝑗  ∈  ω ¬  ∀𝑔 𝑖 𝑢  =  ∀𝑔 𝑗 𝑎 ) | 
						
							| 99 | 98 | adantr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  ∧  𝑖  ∈  ω )  →  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ∀ 𝑗  ∈  ω ¬  ∀𝑔 𝑖 𝑢  =  ∀𝑔 𝑗 𝑎 ) | 
						
							| 100 |  | r19.26 | ⊢ ( ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ∀𝑔 𝑖 𝑢  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  ∀𝑔 𝑖 𝑢  =  ∀𝑔 𝑗 𝑎 )  ↔  ( ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ∀𝑔 𝑖 𝑢  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ∀ 𝑗  ∈  ω ¬  ∀𝑔 𝑖 𝑢  =  ∀𝑔 𝑗 𝑎 ) ) | 
						
							| 101 | 78 99 100 | sylanbrc | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  ∧  𝑖  ∈  ω )  →  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ∀𝑔 𝑖 𝑢  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  ∀𝑔 𝑖 𝑢  =  ∀𝑔 𝑗 𝑎 ) ) | 
						
							| 102 | 73 101 | jca | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  ∧  𝑖  ∈  ω )  →  ( ¬  ∀𝑔 𝑖 𝑢  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ∀𝑔 𝑖 𝑢  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  ∀𝑔 𝑖 𝑢  =  ∀𝑔 𝑗 𝑎 ) ) ) | 
						
							| 103 |  | eleq1 | ⊢ ( ∀𝑔 𝑖 𝑢  =  𝑓  →  ( ∀𝑔 𝑖 𝑢  ∈  ( Fmla ‘ 𝑁 )  ↔  𝑓  ∈  ( Fmla ‘ 𝑁 ) ) ) | 
						
							| 104 | 103 | notbid | ⊢ ( ∀𝑔 𝑖 𝑢  =  𝑓  →  ( ¬  ∀𝑔 𝑖 𝑢  ∈  ( Fmla ‘ 𝑁 )  ↔  ¬  𝑓  ∈  ( Fmla ‘ 𝑁 ) ) ) | 
						
							| 105 |  | eqeq1 | ⊢ ( ∀𝑔 𝑖 𝑢  =  𝑓  →  ( ∀𝑔 𝑖 𝑢  =  ( 𝑎 ⊼𝑔 𝑏 )  ↔  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 ) ) ) | 
						
							| 106 | 105 | notbid | ⊢ ( ∀𝑔 𝑖 𝑢  =  𝑓  →  ( ¬  ∀𝑔 𝑖 𝑢  =  ( 𝑎 ⊼𝑔 𝑏 )  ↔  ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 ) ) ) | 
						
							| 107 | 106 | ralbidv | ⊢ ( ∀𝑔 𝑖 𝑢  =  𝑓  →  ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ∀𝑔 𝑖 𝑢  =  ( 𝑎 ⊼𝑔 𝑏 )  ↔  ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 ) ) ) | 
						
							| 108 |  | eqeq1 | ⊢ ( ∀𝑔 𝑖 𝑢  =  𝑓  →  ( ∀𝑔 𝑖 𝑢  =  ∀𝑔 𝑗 𝑎  ↔  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) | 
						
							| 109 | 108 | notbid | ⊢ ( ∀𝑔 𝑖 𝑢  =  𝑓  →  ( ¬  ∀𝑔 𝑖 𝑢  =  ∀𝑔 𝑗 𝑎  ↔  ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) | 
						
							| 110 | 109 | ralbidv | ⊢ ( ∀𝑔 𝑖 𝑢  =  𝑓  →  ( ∀ 𝑗  ∈  ω ¬  ∀𝑔 𝑖 𝑢  =  ∀𝑔 𝑗 𝑎  ↔  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) | 
						
							| 111 | 107 110 | anbi12d | ⊢ ( ∀𝑔 𝑖 𝑢  =  𝑓  →  ( ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ∀𝑔 𝑖 𝑢  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  ∀𝑔 𝑖 𝑢  =  ∀𝑔 𝑗 𝑎 )  ↔  ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) ) | 
						
							| 112 | 111 | ralbidv | ⊢ ( ∀𝑔 𝑖 𝑢  =  𝑓  →  ( ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ∀𝑔 𝑖 𝑢  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  ∀𝑔 𝑖 𝑢  =  ∀𝑔 𝑗 𝑎 )  ↔  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) ) | 
						
							| 113 | 104 112 | anbi12d | ⊢ ( ∀𝑔 𝑖 𝑢  =  𝑓  →  ( ( ¬  ∀𝑔 𝑖 𝑢  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ∀𝑔 𝑖 𝑢  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  ∀𝑔 𝑖 𝑢  =  ∀𝑔 𝑗 𝑎 ) )  ↔  ( ¬  𝑓  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) ) ) | 
						
							| 114 | 113 | eqcoms | ⊢ ( 𝑓  =  ∀𝑔 𝑖 𝑢  →  ( ( ¬  ∀𝑔 𝑖 𝑢  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ∀𝑔 𝑖 𝑢  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  ∀𝑔 𝑖 𝑢  =  ∀𝑔 𝑗 𝑎 ) )  ↔  ( ¬  𝑓  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) ) ) | 
						
							| 115 | 102 114 | syl5ibcom | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  ∧  𝑖  ∈  ω )  →  ( 𝑓  =  ∀𝑔 𝑖 𝑢  →  ( ¬  𝑓  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) ) ) | 
						
							| 116 | 115 | rexlimdva | ⊢ ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  →  ( ∃ 𝑖  ∈  ω 𝑓  =  ∀𝑔 𝑖 𝑢  →  ( ¬  𝑓  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) ) ) | 
						
							| 117 | 67 116 | jaod | ⊢ ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  →  ( ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑓  =  ∀𝑔 𝑖 𝑢 )  →  ( ¬  𝑓  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) ) ) | 
						
							| 118 | 117 | rexlimdva | ⊢ ( 𝑁  ∈  ω  →  ( ∃ 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑓  =  ∀𝑔 𝑖 𝑢 )  →  ( ¬  𝑓  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) ) ) | 
						
							| 119 |  | elndif | ⊢ ( 𝑣  ∈  ( Fmla ‘ 𝑁 )  →  ¬  𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ) | 
						
							| 120 | 119 | adantl | ⊢ ( ( 𝑢  ∈  ( Fmla ‘ 𝑁 )  ∧  𝑣  ∈  ( Fmla ‘ 𝑁 ) )  →  ¬  𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ) | 
						
							| 121 | 120 | intnand | ⊢ ( ( 𝑢  ∈  ( Fmla ‘ 𝑁 )  ∧  𝑣  ∈  ( Fmla ‘ 𝑁 ) )  →  ¬  ( 𝑢  ∈  ( Fmla ‘ 𝑁 )  ∧  𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ) ) | 
						
							| 122 | 11 121 | syl | ⊢ ( ( 𝑁  ∈  ω  ∧  ( 𝑢 ⊼𝑔 𝑣 )  ∈  ( Fmla ‘ 𝑁 ) )  →  ¬  ( 𝑢  ∈  ( Fmla ‘ 𝑁 )  ∧  𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ) ) | 
						
							| 123 | 122 | ex | ⊢ ( 𝑁  ∈  ω  →  ( ( 𝑢 ⊼𝑔 𝑣 )  ∈  ( Fmla ‘ 𝑁 )  →  ¬  ( 𝑢  ∈  ( Fmla ‘ 𝑁 )  ∧  𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ) ) ) | 
						
							| 124 | 123 | con2d | ⊢ ( 𝑁  ∈  ω  →  ( ( 𝑢  ∈  ( Fmla ‘ 𝑁 )  ∧  𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  →  ¬  ( 𝑢 ⊼𝑔 𝑣 )  ∈  ( Fmla ‘ 𝑁 ) ) ) | 
						
							| 125 | 124 | impl | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ 𝑁 ) )  ∧  𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  →  ¬  ( 𝑢 ⊼𝑔 𝑣 )  ∈  ( Fmla ‘ 𝑁 ) ) | 
						
							| 126 |  | elneeldif | ⊢ ( ( 𝑏  ∈  ( Fmla ‘ 𝑁 )  ∧  𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  →  𝑏  ≠  𝑣 ) | 
						
							| 127 | 126 | necomd | ⊢ ( ( 𝑏  ∈  ( Fmla ‘ 𝑁 )  ∧  𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  →  𝑣  ≠  𝑏 ) | 
						
							| 128 | 127 | ancoms | ⊢ ( ( 𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ∧  𝑏  ∈  ( Fmla ‘ 𝑁 ) )  →  𝑣  ≠  𝑏 ) | 
						
							| 129 | 128 | neneqd | ⊢ ( ( 𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ∧  𝑏  ∈  ( Fmla ‘ 𝑁 ) )  →  ¬  𝑣  =  𝑏 ) | 
						
							| 130 | 129 | olcd | ⊢ ( ( 𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ∧  𝑏  ∈  ( Fmla ‘ 𝑁 ) )  →  ( ¬  𝑢  =  𝑎  ∨  ¬  𝑣  =  𝑏 ) ) | 
						
							| 131 | 130 28 | sylibr | ⊢ ( ( 𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ∧  𝑏  ∈  ( Fmla ‘ 𝑁 ) )  →  ¬  〈 𝑢 ,  𝑣 〉  =  〈 𝑎 ,  𝑏 〉 ) | 
						
							| 132 | 131 | intnand | ⊢ ( ( 𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ∧  𝑏  ∈  ( Fmla ‘ 𝑁 ) )  →  ¬  ( 1o  =  1o  ∧  〈 𝑢 ,  𝑣 〉  =  〈 𝑎 ,  𝑏 〉 ) ) | 
						
							| 133 | 132 40 | sylnibr | ⊢ ( ( 𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ∧  𝑏  ∈  ( Fmla ‘ 𝑁 ) )  →  ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 ) ) | 
						
							| 134 | 133 | ralrimiva | ⊢ ( 𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  →  ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 ) ) | 
						
							| 135 | 134 | ralrimivw | ⊢ ( 𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  →  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 ) ) | 
						
							| 136 | 135 | adantl | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ 𝑁 ) )  ∧  𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  →  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 ) ) | 
						
							| 137 | 48 | a1i | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ 𝑁 ) )  ∧  𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  →  ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎 ) | 
						
							| 138 | 137 | ralrimivw | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ 𝑁 ) )  ∧  𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  →  ∀ 𝑗  ∈  ω ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎 ) | 
						
							| 139 | 138 | ralrimivw | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ 𝑁 ) )  ∧  𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  →  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ∀ 𝑗  ∈  ω ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎 ) | 
						
							| 140 | 136 139 52 | sylanbrc | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ 𝑁 ) )  ∧  𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  →  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎 ) ) | 
						
							| 141 | 125 140 | jca | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ 𝑁 ) )  ∧  𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  →  ( ¬  ( 𝑢 ⊼𝑔 𝑣 )  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎 ) ) ) | 
						
							| 142 |  | eleq1 | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 )  =  𝑓  →  ( ( 𝑢 ⊼𝑔 𝑣 )  ∈  ( Fmla ‘ 𝑁 )  ↔  𝑓  ∈  ( Fmla ‘ 𝑁 ) ) ) | 
						
							| 143 | 142 | notbid | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 )  =  𝑓  →  ( ¬  ( 𝑢 ⊼𝑔 𝑣 )  ∈  ( Fmla ‘ 𝑁 )  ↔  ¬  𝑓  ∈  ( Fmla ‘ 𝑁 ) ) ) | 
						
							| 144 |  | eqeq1 | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 )  =  𝑓  →  ( ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 )  ↔  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 ) ) ) | 
						
							| 145 | 144 | notbid | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 )  =  𝑓  →  ( ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 )  ↔  ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 ) ) ) | 
						
							| 146 | 145 | ralbidv | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 )  =  𝑓  →  ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 )  ↔  ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 ) ) ) | 
						
							| 147 |  | eqeq1 | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 )  =  𝑓  →  ( ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎  ↔  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) | 
						
							| 148 | 147 | notbid | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 )  =  𝑓  →  ( ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎  ↔  ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) | 
						
							| 149 | 148 | ralbidv | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 )  =  𝑓  →  ( ∀ 𝑗  ∈  ω ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎  ↔  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) | 
						
							| 150 | 146 149 | anbi12d | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 )  =  𝑓  →  ( ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎 )  ↔  ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) ) | 
						
							| 151 | 150 | ralbidv | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 )  =  𝑓  →  ( ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎 )  ↔  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) ) | 
						
							| 152 | 143 151 | anbi12d | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 )  =  𝑓  →  ( ( ¬  ( 𝑢 ⊼𝑔 𝑣 )  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎 ) )  ↔  ( ¬  𝑓  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) ) ) | 
						
							| 153 | 152 | eqcoms | ⊢ ( 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 )  →  ( ( ¬  ( 𝑢 ⊼𝑔 𝑣 )  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑗 𝑎 ) )  ↔  ( ¬  𝑓  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) ) ) | 
						
							| 154 | 141 153 | syl5ibcom | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ 𝑁 ) )  ∧  𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) )  →  ( 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 )  →  ( ¬  𝑓  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) ) ) | 
						
							| 155 | 154 | rexlimdva | ⊢ ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ 𝑁 ) )  →  ( ∃ 𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 )  →  ( ¬  𝑓  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) ) ) | 
						
							| 156 | 155 | rexlimdva | ⊢ ( 𝑁  ∈  ω  →  ( ∃ 𝑢  ∈  ( Fmla ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 )  →  ( ¬  𝑓  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) ) ) | 
						
							| 157 | 118 156 | jaod | ⊢ ( 𝑁  ∈  ω  →  ( ( ∃ 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑓  =  ∀𝑔 𝑖 𝑢 )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 ) )  →  ( ¬  𝑓  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) ) ) | 
						
							| 158 |  | isfmlasuc | ⊢ ( ( 𝑁  ∈  ω  ∧  𝑓  ∈  V )  →  ( 𝑓  ∈  ( Fmla ‘ suc  𝑁 )  ↔  ( 𝑓  ∈  ( Fmla ‘ 𝑁 )  ∨  ∃ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∃ 𝑏  ∈  ( Fmla ‘ 𝑁 ) 𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∨  ∃ 𝑗  ∈  ω 𝑓  =  ∀𝑔 𝑗 𝑎 ) ) ) ) | 
						
							| 159 | 158 | elvd | ⊢ ( 𝑁  ∈  ω  →  ( 𝑓  ∈  ( Fmla ‘ suc  𝑁 )  ↔  ( 𝑓  ∈  ( Fmla ‘ 𝑁 )  ∨  ∃ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∃ 𝑏  ∈  ( Fmla ‘ 𝑁 ) 𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∨  ∃ 𝑗  ∈  ω 𝑓  =  ∀𝑔 𝑗 𝑎 ) ) ) ) | 
						
							| 160 | 159 | notbid | ⊢ ( 𝑁  ∈  ω  →  ( ¬  𝑓  ∈  ( Fmla ‘ suc  𝑁 )  ↔  ¬  ( 𝑓  ∈  ( Fmla ‘ 𝑁 )  ∨  ∃ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∃ 𝑏  ∈  ( Fmla ‘ 𝑁 ) 𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∨  ∃ 𝑗  ∈  ω 𝑓  =  ∀𝑔 𝑗 𝑎 ) ) ) ) | 
						
							| 161 |  | ioran | ⊢ ( ¬  ( 𝑓  ∈  ( Fmla ‘ 𝑁 )  ∨  ∃ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∃ 𝑏  ∈  ( Fmla ‘ 𝑁 ) 𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∨  ∃ 𝑗  ∈  ω 𝑓  =  ∀𝑔 𝑗 𝑎 ) )  ↔  ( ¬  𝑓  ∈  ( Fmla ‘ 𝑁 )  ∧  ¬  ∃ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∃ 𝑏  ∈  ( Fmla ‘ 𝑁 ) 𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∨  ∃ 𝑗  ∈  ω 𝑓  =  ∀𝑔 𝑗 𝑎 ) ) ) | 
						
							| 162 |  | ralnex | ⊢ ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ↔  ¬  ∃ 𝑏  ∈  ( Fmla ‘ 𝑁 ) 𝑓  =  ( 𝑎 ⊼𝑔 𝑏 ) ) | 
						
							| 163 |  | ralnex | ⊢ ( ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎  ↔  ¬  ∃ 𝑗  ∈  ω 𝑓  =  ∀𝑔 𝑗 𝑎 ) | 
						
							| 164 | 162 163 | anbi12i | ⊢ ( ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 )  ↔  ( ¬  ∃ 𝑏  ∈  ( Fmla ‘ 𝑁 ) 𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ¬  ∃ 𝑗  ∈  ω 𝑓  =  ∀𝑔 𝑗 𝑎 ) ) | 
						
							| 165 |  | ioran | ⊢ ( ¬  ( ∃ 𝑏  ∈  ( Fmla ‘ 𝑁 ) 𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∨  ∃ 𝑗  ∈  ω 𝑓  =  ∀𝑔 𝑗 𝑎 )  ↔  ( ¬  ∃ 𝑏  ∈  ( Fmla ‘ 𝑁 ) 𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ¬  ∃ 𝑗  ∈  ω 𝑓  =  ∀𝑔 𝑗 𝑎 ) ) | 
						
							| 166 | 164 165 | bitr4i | ⊢ ( ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 )  ↔  ¬  ( ∃ 𝑏  ∈  ( Fmla ‘ 𝑁 ) 𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∨  ∃ 𝑗  ∈  ω 𝑓  =  ∀𝑔 𝑗 𝑎 ) ) | 
						
							| 167 | 166 | ralbii | ⊢ ( ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 )  ↔  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ¬  ( ∃ 𝑏  ∈  ( Fmla ‘ 𝑁 ) 𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∨  ∃ 𝑗  ∈  ω 𝑓  =  ∀𝑔 𝑗 𝑎 ) ) | 
						
							| 168 |  | ralnex | ⊢ ( ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ¬  ( ∃ 𝑏  ∈  ( Fmla ‘ 𝑁 ) 𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∨  ∃ 𝑗  ∈  ω 𝑓  =  ∀𝑔 𝑗 𝑎 )  ↔  ¬  ∃ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∃ 𝑏  ∈  ( Fmla ‘ 𝑁 ) 𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∨  ∃ 𝑗  ∈  ω 𝑓  =  ∀𝑔 𝑗 𝑎 ) ) | 
						
							| 169 | 167 168 | bitr2i | ⊢ ( ¬  ∃ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∃ 𝑏  ∈  ( Fmla ‘ 𝑁 ) 𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∨  ∃ 𝑗  ∈  ω 𝑓  =  ∀𝑔 𝑗 𝑎 )  ↔  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) | 
						
							| 170 | 169 | anbi2i | ⊢ ( ( ¬  𝑓  ∈  ( Fmla ‘ 𝑁 )  ∧  ¬  ∃ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∃ 𝑏  ∈  ( Fmla ‘ 𝑁 ) 𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∨  ∃ 𝑗  ∈  ω 𝑓  =  ∀𝑔 𝑗 𝑎 ) )  ↔  ( ¬  𝑓  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) ) | 
						
							| 171 | 161 170 | bitri | ⊢ ( ¬  ( 𝑓  ∈  ( Fmla ‘ 𝑁 )  ∨  ∃ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∃ 𝑏  ∈  ( Fmla ‘ 𝑁 ) 𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∨  ∃ 𝑗  ∈  ω 𝑓  =  ∀𝑔 𝑗 𝑎 ) )  ↔  ( ¬  𝑓  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) ) | 
						
							| 172 | 160 171 | bitrdi | ⊢ ( 𝑁  ∈  ω  →  ( ¬  𝑓  ∈  ( Fmla ‘ suc  𝑁 )  ↔  ( ¬  𝑓  ∈  ( Fmla ‘ 𝑁 )  ∧  ∀ 𝑎  ∈  ( Fmla ‘ 𝑁 ) ( ∀ 𝑏  ∈  ( Fmla ‘ 𝑁 ) ¬  𝑓  =  ( 𝑎 ⊼𝑔 𝑏 )  ∧  ∀ 𝑗  ∈  ω ¬  𝑓  =  ∀𝑔 𝑗 𝑎 ) ) ) ) | 
						
							| 173 | 157 172 | sylibrd | ⊢ ( 𝑁  ∈  ω  →  ( ( ∃ 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑓  =  ∀𝑔 𝑖 𝑢 )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑓  =  ( 𝑢 ⊼𝑔 𝑣 ) )  →  ¬  𝑓  ∈  ( Fmla ‘ suc  𝑁 ) ) ) | 
						
							| 174 | 10 173 | biimtrid | ⊢ ( 𝑁  ∈  ω  →  ( 𝑓  ∈  { 𝑥  ∣  ( ∃ 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 ) ) }  →  ¬  𝑓  ∈  ( Fmla ‘ suc  𝑁 ) ) ) | 
						
							| 175 | 174 | ralrimiv | ⊢ ( 𝑁  ∈  ω  →  ∀ 𝑓  ∈  { 𝑥  ∣  ( ∃ 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 ) ) } ¬  𝑓  ∈  ( Fmla ‘ suc  𝑁 ) ) | 
						
							| 176 |  | disjr | ⊢ ( ( ( Fmla ‘ suc  𝑁 )  ∩  { 𝑥  ∣  ( ∃ 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 ) ) } )  =  ∅  ↔  ∀ 𝑓  ∈  { 𝑥  ∣  ( ∃ 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 ) ) } ¬  𝑓  ∈  ( Fmla ‘ suc  𝑁 ) ) | 
						
							| 177 | 175 176 | sylibr | ⊢ ( 𝑁  ∈  ω  →  ( ( Fmla ‘ suc  𝑁 )  ∩  { 𝑥  ∣  ( ∃ 𝑢  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 ) ) } )  =  ∅ ) |