| Step | Hyp | Ref | Expression | 
						
							| 1 |  | goaln0 | ⊢ ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ 𝑁 )  →  𝑁  ≠  ∅ ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( 𝑁  ∈  ω  ∧  ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ 𝑁 ) )  →  𝑁  ≠  ∅ ) | 
						
							| 3 |  | nnsuc | ⊢ ( ( 𝑁  ∈  ω  ∧  𝑁  ≠  ∅ )  →  ∃ 𝑛  ∈  ω 𝑁  =  suc  𝑛 ) | 
						
							| 4 |  | suceq | ⊢ ( 𝑥  =  ∅  →  suc  𝑥  =  suc  ∅ ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( 𝑥  =  ∅  →  ( Fmla ‘ suc  𝑥 )  =  ( Fmla ‘ suc  ∅ ) ) | 
						
							| 6 | 5 | eleq2d | ⊢ ( 𝑥  =  ∅  →  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑥 )  ↔  ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) ) | 
						
							| 7 | 5 | eleq2d | ⊢ ( 𝑥  =  ∅  →  ( 𝑎  ∈  ( Fmla ‘ suc  𝑥 )  ↔  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) ) | 
						
							| 8 | 6 7 | imbi12d | ⊢ ( 𝑥  =  ∅  →  ( ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑥 )  →  𝑎  ∈  ( Fmla ‘ suc  𝑥 ) )  ↔  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  ∅ )  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) ) ) | 
						
							| 9 |  | suceq | ⊢ ( 𝑥  =  𝑦  →  suc  𝑥  =  suc  𝑦 ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( Fmla ‘ suc  𝑥 )  =  ( Fmla ‘ suc  𝑦 ) ) | 
						
							| 11 | 10 | eleq2d | ⊢ ( 𝑥  =  𝑦  →  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑥 )  ↔  ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑦 ) ) ) | 
						
							| 12 | 10 | eleq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝑎  ∈  ( Fmla ‘ suc  𝑥 )  ↔  𝑎  ∈  ( Fmla ‘ suc  𝑦 ) ) ) | 
						
							| 13 | 11 12 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑥 )  →  𝑎  ∈  ( Fmla ‘ suc  𝑥 ) )  ↔  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑦 )  →  𝑎  ∈  ( Fmla ‘ suc  𝑦 ) ) ) ) | 
						
							| 14 |  | suceq | ⊢ ( 𝑥  =  suc  𝑦  →  suc  𝑥  =  suc  suc  𝑦 ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( 𝑥  =  suc  𝑦  →  ( Fmla ‘ suc  𝑥 )  =  ( Fmla ‘ suc  suc  𝑦 ) ) | 
						
							| 16 | 15 | eleq2d | ⊢ ( 𝑥  =  suc  𝑦  →  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑥 )  ↔  ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  suc  𝑦 ) ) ) | 
						
							| 17 | 15 | eleq2d | ⊢ ( 𝑥  =  suc  𝑦  →  ( 𝑎  ∈  ( Fmla ‘ suc  𝑥 )  ↔  𝑎  ∈  ( Fmla ‘ suc  suc  𝑦 ) ) ) | 
						
							| 18 | 16 17 | imbi12d | ⊢ ( 𝑥  =  suc  𝑦  →  ( ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑥 )  →  𝑎  ∈  ( Fmla ‘ suc  𝑥 ) )  ↔  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  suc  𝑦 )  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑦 ) ) ) ) | 
						
							| 19 |  | suceq | ⊢ ( 𝑥  =  𝑛  →  suc  𝑥  =  suc  𝑛 ) | 
						
							| 20 | 19 | fveq2d | ⊢ ( 𝑥  =  𝑛  →  ( Fmla ‘ suc  𝑥 )  =  ( Fmla ‘ suc  𝑛 ) ) | 
						
							| 21 | 20 | eleq2d | ⊢ ( 𝑥  =  𝑛  →  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑥 )  ↔  ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑛 ) ) ) | 
						
							| 22 | 20 | eleq2d | ⊢ ( 𝑥  =  𝑛  →  ( 𝑎  ∈  ( Fmla ‘ suc  𝑥 )  ↔  𝑎  ∈  ( Fmla ‘ suc  𝑛 ) ) ) | 
						
							| 23 | 21 22 | imbi12d | ⊢ ( 𝑥  =  𝑛  →  ( ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑥 )  →  𝑎  ∈  ( Fmla ‘ suc  𝑥 ) )  ↔  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑛 )  →  𝑎  ∈  ( Fmla ‘ suc  𝑛 ) ) ) ) | 
						
							| 24 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 25 |  | df-goal | ⊢ ∀𝑔 𝑖 𝑎  =  〈 2o ,  〈 𝑖 ,  𝑎 〉 〉 | 
						
							| 26 |  | opex | ⊢ 〈 2o ,  〈 𝑖 ,  𝑎 〉 〉  ∈  V | 
						
							| 27 | 25 26 | eqeltri | ⊢ ∀𝑔 𝑖 𝑎  ∈  V | 
						
							| 28 |  | isfmlasuc | ⊢ ( ( ∅  ∈  ω  ∧  ∀𝑔 𝑖 𝑎  ∈  V )  →  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  ∅ )  ↔  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ ∅ )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ ∅ ) ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) ∀𝑔 𝑖 𝑎  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑘  ∈  ω ∀𝑔 𝑖 𝑎  =  ∀𝑔 𝑘 𝑢 ) ) ) ) | 
						
							| 29 | 24 27 28 | mp2an | ⊢ ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  ∅ )  ↔  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ ∅ )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ ∅ ) ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) ∀𝑔 𝑖 𝑎  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑘  ∈  ω ∀𝑔 𝑖 𝑎  =  ∀𝑔 𝑘 𝑢 ) ) ) | 
						
							| 30 |  | eqeq1 | ⊢ ( 𝑥  =  ∀𝑔 𝑖 𝑎  →  ( 𝑥  =  ( 𝑘 ∈𝑔 𝑗 )  ↔  ∀𝑔 𝑖 𝑎  =  ( 𝑘 ∈𝑔 𝑗 ) ) ) | 
						
							| 31 | 30 | 2rexbidv | ⊢ ( 𝑥  =  ∀𝑔 𝑖 𝑎  →  ( ∃ 𝑘  ∈  ω ∃ 𝑗  ∈  ω 𝑥  =  ( 𝑘 ∈𝑔 𝑗 )  ↔  ∃ 𝑘  ∈  ω ∃ 𝑗  ∈  ω ∀𝑔 𝑖 𝑎  =  ( 𝑘 ∈𝑔 𝑗 ) ) ) | 
						
							| 32 |  | fmla0 | ⊢ ( Fmla ‘ ∅ )  =  { 𝑥  ∈  V  ∣  ∃ 𝑘  ∈  ω ∃ 𝑗  ∈  ω 𝑥  =  ( 𝑘 ∈𝑔 𝑗 ) } | 
						
							| 33 | 31 32 | elrab2 | ⊢ ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ ∅ )  ↔  ( ∀𝑔 𝑖 𝑎  ∈  V  ∧  ∃ 𝑘  ∈  ω ∃ 𝑗  ∈  ω ∀𝑔 𝑖 𝑎  =  ( 𝑘 ∈𝑔 𝑗 ) ) ) | 
						
							| 34 | 25 | a1i | ⊢ ( ( 𝑘  ∈  ω  ∧  𝑗  ∈  ω )  →  ∀𝑔 𝑖 𝑎  =  〈 2o ,  〈 𝑖 ,  𝑎 〉 〉 ) | 
						
							| 35 |  | goel | ⊢ ( ( 𝑘  ∈  ω  ∧  𝑗  ∈  ω )  →  ( 𝑘 ∈𝑔 𝑗 )  =  〈 ∅ ,  〈 𝑘 ,  𝑗 〉 〉 ) | 
						
							| 36 | 34 35 | eqeq12d | ⊢ ( ( 𝑘  ∈  ω  ∧  𝑗  ∈  ω )  →  ( ∀𝑔 𝑖 𝑎  =  ( 𝑘 ∈𝑔 𝑗 )  ↔  〈 2o ,  〈 𝑖 ,  𝑎 〉 〉  =  〈 ∅ ,  〈 𝑘 ,  𝑗 〉 〉 ) ) | 
						
							| 37 |  | 2oex | ⊢ 2o  ∈  V | 
						
							| 38 |  | opex | ⊢ 〈 𝑖 ,  𝑎 〉  ∈  V | 
						
							| 39 | 37 38 | opth | ⊢ ( 〈 2o ,  〈 𝑖 ,  𝑎 〉 〉  =  〈 ∅ ,  〈 𝑘 ,  𝑗 〉 〉  ↔  ( 2o  =  ∅  ∧  〈 𝑖 ,  𝑎 〉  =  〈 𝑘 ,  𝑗 〉 ) ) | 
						
							| 40 |  | 2on0 | ⊢ 2o  ≠  ∅ | 
						
							| 41 |  | eqneqall | ⊢ ( 2o  =  ∅  →  ( 2o  ≠  ∅  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) ) | 
						
							| 42 | 40 41 | mpi | ⊢ ( 2o  =  ∅  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 2o  =  ∅  ∧  〈 𝑖 ,  𝑎 〉  =  〈 𝑘 ,  𝑗 〉 )  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) | 
						
							| 44 | 39 43 | sylbi | ⊢ ( 〈 2o ,  〈 𝑖 ,  𝑎 〉 〉  =  〈 ∅ ,  〈 𝑘 ,  𝑗 〉 〉  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) | 
						
							| 45 | 36 44 | biimtrdi | ⊢ ( ( 𝑘  ∈  ω  ∧  𝑗  ∈  ω )  →  ( ∀𝑔 𝑖 𝑎  =  ( 𝑘 ∈𝑔 𝑗 )  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) ) | 
						
							| 46 | 45 | rexlimdva | ⊢ ( 𝑘  ∈  ω  →  ( ∃ 𝑗  ∈  ω ∀𝑔 𝑖 𝑎  =  ( 𝑘 ∈𝑔 𝑗 )  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) ) | 
						
							| 47 | 46 | rexlimiv | ⊢ ( ∃ 𝑘  ∈  ω ∃ 𝑗  ∈  ω ∀𝑔 𝑖 𝑎  =  ( 𝑘 ∈𝑔 𝑗 )  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) | 
						
							| 48 | 33 47 | simplbiim | ⊢ ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ ∅ )  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) | 
						
							| 49 |  | gonanegoal | ⊢ ( 𝑢 ⊼𝑔 𝑣 )  ≠  ∀𝑔 𝑖 𝑎 | 
						
							| 50 |  | eqneqall | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑖 𝑎  →  ( ( 𝑢 ⊼𝑔 𝑣 )  ≠  ∀𝑔 𝑖 𝑎  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) ) | 
						
							| 51 | 49 50 | mpi | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑖 𝑎  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) | 
						
							| 52 | 51 | eqcoms | ⊢ ( ∀𝑔 𝑖 𝑎  =  ( 𝑢 ⊼𝑔 𝑣 )  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) | 
						
							| 53 | 52 | a1i | ⊢ ( ( 𝑢  ∈  ( Fmla ‘ ∅ )  ∧  𝑣  ∈  ( Fmla ‘ ∅ ) )  →  ( ∀𝑔 𝑖 𝑎  =  ( 𝑢 ⊼𝑔 𝑣 )  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) ) | 
						
							| 54 | 53 | rexlimdva | ⊢ ( 𝑢  ∈  ( Fmla ‘ ∅ )  →  ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) ∀𝑔 𝑖 𝑎  =  ( 𝑢 ⊼𝑔 𝑣 )  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) ) | 
						
							| 55 |  | df-goal | ⊢ ∀𝑔 𝑘 𝑢  =  〈 2o ,  〈 𝑘 ,  𝑢 〉 〉 | 
						
							| 56 | 25 55 | eqeq12i | ⊢ ( ∀𝑔 𝑖 𝑎  =  ∀𝑔 𝑘 𝑢  ↔  〈 2o ,  〈 𝑖 ,  𝑎 〉 〉  =  〈 2o ,  〈 𝑘 ,  𝑢 〉 〉 ) | 
						
							| 57 | 37 38 | opth | ⊢ ( 〈 2o ,  〈 𝑖 ,  𝑎 〉 〉  =  〈 2o ,  〈 𝑘 ,  𝑢 〉 〉  ↔  ( 2o  =  2o  ∧  〈 𝑖 ,  𝑎 〉  =  〈 𝑘 ,  𝑢 〉 ) ) | 
						
							| 58 |  | vex | ⊢ 𝑖  ∈  V | 
						
							| 59 |  | vex | ⊢ 𝑎  ∈  V | 
						
							| 60 | 58 59 | opth | ⊢ ( 〈 𝑖 ,  𝑎 〉  =  〈 𝑘 ,  𝑢 〉  ↔  ( 𝑖  =  𝑘  ∧  𝑎  =  𝑢 ) ) | 
						
							| 61 |  | eleq1w | ⊢ ( 𝑢  =  𝑎  →  ( 𝑢  ∈  ( Fmla ‘ ∅ )  ↔  𝑎  ∈  ( Fmla ‘ ∅ ) ) ) | 
						
							| 62 |  | fmlasssuc | ⊢ ( ∅  ∈  ω  →  ( Fmla ‘ ∅ )  ⊆  ( Fmla ‘ suc  ∅ ) ) | 
						
							| 63 | 24 62 | ax-mp | ⊢ ( Fmla ‘ ∅ )  ⊆  ( Fmla ‘ suc  ∅ ) | 
						
							| 64 | 63 | sseli | ⊢ ( 𝑎  ∈  ( Fmla ‘ ∅ )  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) | 
						
							| 65 | 61 64 | biimtrdi | ⊢ ( 𝑢  =  𝑎  →  ( 𝑢  ∈  ( Fmla ‘ ∅ )  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) ) | 
						
							| 66 | 65 | eqcoms | ⊢ ( 𝑎  =  𝑢  →  ( 𝑢  ∈  ( Fmla ‘ ∅ )  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) ) | 
						
							| 67 | 60 66 | simplbiim | ⊢ ( 〈 𝑖 ,  𝑎 〉  =  〈 𝑘 ,  𝑢 〉  →  ( 𝑢  ∈  ( Fmla ‘ ∅ )  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) ) | 
						
							| 68 | 57 67 | simplbiim | ⊢ ( 〈 2o ,  〈 𝑖 ,  𝑎 〉 〉  =  〈 2o ,  〈 𝑘 ,  𝑢 〉 〉  →  ( 𝑢  ∈  ( Fmla ‘ ∅ )  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) ) | 
						
							| 69 | 68 | com12 | ⊢ ( 𝑢  ∈  ( Fmla ‘ ∅ )  →  ( 〈 2o ,  〈 𝑖 ,  𝑎 〉 〉  =  〈 2o ,  〈 𝑘 ,  𝑢 〉 〉  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( 𝑢  ∈  ( Fmla ‘ ∅ )  ∧  𝑘  ∈  ω )  →  ( 〈 2o ,  〈 𝑖 ,  𝑎 〉 〉  =  〈 2o ,  〈 𝑘 ,  𝑢 〉 〉  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) ) | 
						
							| 71 | 56 70 | biimtrid | ⊢ ( ( 𝑢  ∈  ( Fmla ‘ ∅ )  ∧  𝑘  ∈  ω )  →  ( ∀𝑔 𝑖 𝑎  =  ∀𝑔 𝑘 𝑢  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) ) | 
						
							| 72 | 71 | rexlimdva | ⊢ ( 𝑢  ∈  ( Fmla ‘ ∅ )  →  ( ∃ 𝑘  ∈  ω ∀𝑔 𝑖 𝑎  =  ∀𝑔 𝑘 𝑢  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) ) | 
						
							| 73 | 54 72 | jaod | ⊢ ( 𝑢  ∈  ( Fmla ‘ ∅ )  →  ( ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) ∀𝑔 𝑖 𝑎  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑘  ∈  ω ∀𝑔 𝑖 𝑎  =  ∀𝑔 𝑘 𝑢 )  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) ) | 
						
							| 74 | 73 | rexlimiv | ⊢ ( ∃ 𝑢  ∈  ( Fmla ‘ ∅ ) ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) ∀𝑔 𝑖 𝑎  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑘  ∈  ω ∀𝑔 𝑖 𝑎  =  ∀𝑔 𝑘 𝑢 )  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) | 
						
							| 75 | 48 74 | jaoi | ⊢ ( ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ ∅ )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ ∅ ) ( ∃ 𝑣  ∈  ( Fmla ‘ ∅ ) ∀𝑔 𝑖 𝑎  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑘  ∈  ω ∀𝑔 𝑖 𝑎  =  ∀𝑔 𝑘 𝑢 ) )  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) | 
						
							| 76 | 29 75 | sylbi | ⊢ ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  ∅ )  →  𝑎  ∈  ( Fmla ‘ suc  ∅ ) ) | 
						
							| 77 |  | goalrlem | ⊢ ( 𝑦  ∈  ω  →  ( ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑦 )  →  𝑎  ∈  ( Fmla ‘ suc  𝑦 ) )  →  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  suc  𝑦 )  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑦 ) ) ) ) | 
						
							| 78 | 8 13 18 23 76 77 | finds | ⊢ ( 𝑛  ∈  ω  →  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑛 )  →  𝑎  ∈  ( Fmla ‘ suc  𝑛 ) ) ) | 
						
							| 79 | 78 | adantr | ⊢ ( ( 𝑛  ∈  ω  ∧  𝑁  =  suc  𝑛 )  →  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑛 )  →  𝑎  ∈  ( Fmla ‘ suc  𝑛 ) ) ) | 
						
							| 80 |  | fveq2 | ⊢ ( 𝑁  =  suc  𝑛  →  ( Fmla ‘ 𝑁 )  =  ( Fmla ‘ suc  𝑛 ) ) | 
						
							| 81 | 80 | eleq2d | ⊢ ( 𝑁  =  suc  𝑛  →  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ 𝑁 )  ↔  ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑛 ) ) ) | 
						
							| 82 | 80 | eleq2d | ⊢ ( 𝑁  =  suc  𝑛  →  ( 𝑎  ∈  ( Fmla ‘ 𝑁 )  ↔  𝑎  ∈  ( Fmla ‘ suc  𝑛 ) ) ) | 
						
							| 83 | 81 82 | imbi12d | ⊢ ( 𝑁  =  suc  𝑛  →  ( ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ 𝑁 )  →  𝑎  ∈  ( Fmla ‘ 𝑁 ) )  ↔  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑛 )  →  𝑎  ∈  ( Fmla ‘ suc  𝑛 ) ) ) ) | 
						
							| 84 | 83 | adantl | ⊢ ( ( 𝑛  ∈  ω  ∧  𝑁  =  suc  𝑛 )  →  ( ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ 𝑁 )  →  𝑎  ∈  ( Fmla ‘ 𝑁 ) )  ↔  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑛 )  →  𝑎  ∈  ( Fmla ‘ suc  𝑛 ) ) ) ) | 
						
							| 85 | 79 84 | mpbird | ⊢ ( ( 𝑛  ∈  ω  ∧  𝑁  =  suc  𝑛 )  →  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ 𝑁 )  →  𝑎  ∈  ( Fmla ‘ 𝑁 ) ) ) | 
						
							| 86 | 85 | rexlimiva | ⊢ ( ∃ 𝑛  ∈  ω 𝑁  =  suc  𝑛  →  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ 𝑁 )  →  𝑎  ∈  ( Fmla ‘ 𝑁 ) ) ) | 
						
							| 87 | 3 86 | syl | ⊢ ( ( 𝑁  ∈  ω  ∧  𝑁  ≠  ∅ )  →  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ 𝑁 )  →  𝑎  ∈  ( Fmla ‘ 𝑁 ) ) ) | 
						
							| 88 | 87 | impancom | ⊢ ( ( 𝑁  ∈  ω  ∧  ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ 𝑁 ) )  →  ( 𝑁  ≠  ∅  →  𝑎  ∈  ( Fmla ‘ 𝑁 ) ) ) | 
						
							| 89 | 2 88 | mpd | ⊢ ( ( 𝑁  ∈  ω  ∧  ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ 𝑁 ) )  →  𝑎  ∈  ( Fmla ‘ 𝑁 ) ) |