| Step | Hyp | Ref | Expression | 
						
							| 1 |  | goaln0 |  |-  ( A.g i a e. ( Fmla ` N ) -> N =/= (/) ) | 
						
							| 2 | 1 | adantl |  |-  ( ( N e. _om /\ A.g i a e. ( Fmla ` N ) ) -> N =/= (/) ) | 
						
							| 3 |  | nnsuc |  |-  ( ( N e. _om /\ N =/= (/) ) -> E. n e. _om N = suc n ) | 
						
							| 4 |  | suceq |  |-  ( x = (/) -> suc x = suc (/) ) | 
						
							| 5 | 4 | fveq2d |  |-  ( x = (/) -> ( Fmla ` suc x ) = ( Fmla ` suc (/) ) ) | 
						
							| 6 | 5 | eleq2d |  |-  ( x = (/) -> ( A.g i a e. ( Fmla ` suc x ) <-> A.g i a e. ( Fmla ` suc (/) ) ) ) | 
						
							| 7 | 5 | eleq2d |  |-  ( x = (/) -> ( a e. ( Fmla ` suc x ) <-> a e. ( Fmla ` suc (/) ) ) ) | 
						
							| 8 | 6 7 | imbi12d |  |-  ( x = (/) -> ( ( A.g i a e. ( Fmla ` suc x ) -> a e. ( Fmla ` suc x ) ) <-> ( A.g i a e. ( Fmla ` suc (/) ) -> a e. ( Fmla ` suc (/) ) ) ) ) | 
						
							| 9 |  | suceq |  |-  ( x = y -> suc x = suc y ) | 
						
							| 10 | 9 | fveq2d |  |-  ( x = y -> ( Fmla ` suc x ) = ( Fmla ` suc y ) ) | 
						
							| 11 | 10 | eleq2d |  |-  ( x = y -> ( A.g i a e. ( Fmla ` suc x ) <-> A.g i a e. ( Fmla ` suc y ) ) ) | 
						
							| 12 | 10 | eleq2d |  |-  ( x = y -> ( a e. ( Fmla ` suc x ) <-> a e. ( Fmla ` suc y ) ) ) | 
						
							| 13 | 11 12 | imbi12d |  |-  ( x = y -> ( ( A.g i a e. ( Fmla ` suc x ) -> a e. ( Fmla ` suc x ) ) <-> ( A.g i a e. ( Fmla ` suc y ) -> a e. ( Fmla ` suc y ) ) ) ) | 
						
							| 14 |  | suceq |  |-  ( x = suc y -> suc x = suc suc y ) | 
						
							| 15 | 14 | fveq2d |  |-  ( x = suc y -> ( Fmla ` suc x ) = ( Fmla ` suc suc y ) ) | 
						
							| 16 | 15 | eleq2d |  |-  ( x = suc y -> ( A.g i a e. ( Fmla ` suc x ) <-> A.g i a e. ( Fmla ` suc suc y ) ) ) | 
						
							| 17 | 15 | eleq2d |  |-  ( x = suc y -> ( a e. ( Fmla ` suc x ) <-> a e. ( Fmla ` suc suc y ) ) ) | 
						
							| 18 | 16 17 | imbi12d |  |-  ( x = suc y -> ( ( A.g i a e. ( Fmla ` suc x ) -> a e. ( Fmla ` suc x ) ) <-> ( A.g i a e. ( Fmla ` suc suc y ) -> a e. ( Fmla ` suc suc y ) ) ) ) | 
						
							| 19 |  | suceq |  |-  ( x = n -> suc x = suc n ) | 
						
							| 20 | 19 | fveq2d |  |-  ( x = n -> ( Fmla ` suc x ) = ( Fmla ` suc n ) ) | 
						
							| 21 | 20 | eleq2d |  |-  ( x = n -> ( A.g i a e. ( Fmla ` suc x ) <-> A.g i a e. ( Fmla ` suc n ) ) ) | 
						
							| 22 | 20 | eleq2d |  |-  ( x = n -> ( a e. ( Fmla ` suc x ) <-> a e. ( Fmla ` suc n ) ) ) | 
						
							| 23 | 21 22 | imbi12d |  |-  ( x = n -> ( ( A.g i a e. ( Fmla ` suc x ) -> a e. ( Fmla ` suc x ) ) <-> ( A.g i a e. ( Fmla ` suc n ) -> a e. ( Fmla ` suc n ) ) ) ) | 
						
							| 24 |  | peano1 |  |-  (/) e. _om | 
						
							| 25 |  | df-goal |  |-  A.g i a = <. 2o , <. i , a >. >. | 
						
							| 26 |  | opex |  |-  <. 2o , <. i , a >. >. e. _V | 
						
							| 27 | 25 26 | eqeltri |  |-  A.g i a e. _V | 
						
							| 28 |  | isfmlasuc |  |-  ( ( (/) e. _om /\ A.g i a e. _V ) -> ( A.g i a e. ( Fmla ` suc (/) ) <-> ( A.g i a e. ( Fmla ` (/) ) \/ E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) A.g i a = ( u |g v ) \/ E. k e. _om A.g i a = A.g k u ) ) ) ) | 
						
							| 29 | 24 27 28 | mp2an |  |-  ( A.g i a e. ( Fmla ` suc (/) ) <-> ( A.g i a e. ( Fmla ` (/) ) \/ E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) A.g i a = ( u |g v ) \/ E. k e. _om A.g i a = A.g k u ) ) ) | 
						
							| 30 |  | eqeq1 |  |-  ( x = A.g i a -> ( x = ( k e.g j ) <-> A.g i a = ( k e.g j ) ) ) | 
						
							| 31 | 30 | 2rexbidv |  |-  ( x = A.g i a -> ( E. k e. _om E. j e. _om x = ( k e.g j ) <-> E. k e. _om E. j e. _om A.g i a = ( k e.g j ) ) ) | 
						
							| 32 |  | fmla0 |  |-  ( Fmla ` (/) ) = { x e. _V | E. k e. _om E. j e. _om x = ( k e.g j ) } | 
						
							| 33 | 31 32 | elrab2 |  |-  ( A.g i a e. ( Fmla ` (/) ) <-> ( A.g i a e. _V /\ E. k e. _om E. j e. _om A.g i a = ( k e.g j ) ) ) | 
						
							| 34 | 25 | a1i |  |-  ( ( k e. _om /\ j e. _om ) -> A.g i a = <. 2o , <. i , a >. >. ) | 
						
							| 35 |  | goel |  |-  ( ( k e. _om /\ j e. _om ) -> ( k e.g j ) = <. (/) , <. k , j >. >. ) | 
						
							| 36 | 34 35 | eqeq12d |  |-  ( ( k e. _om /\ j e. _om ) -> ( A.g i a = ( k e.g j ) <-> <. 2o , <. i , a >. >. = <. (/) , <. k , j >. >. ) ) | 
						
							| 37 |  | 2oex |  |-  2o e. _V | 
						
							| 38 |  | opex |  |-  <. i , a >. e. _V | 
						
							| 39 | 37 38 | opth |  |-  ( <. 2o , <. i , a >. >. = <. (/) , <. k , j >. >. <-> ( 2o = (/) /\ <. i , a >. = <. k , j >. ) ) | 
						
							| 40 |  | 2on0 |  |-  2o =/= (/) | 
						
							| 41 |  | eqneqall |  |-  ( 2o = (/) -> ( 2o =/= (/) -> a e. ( Fmla ` suc (/) ) ) ) | 
						
							| 42 | 40 41 | mpi |  |-  ( 2o = (/) -> a e. ( Fmla ` suc (/) ) ) | 
						
							| 43 | 42 | adantr |  |-  ( ( 2o = (/) /\ <. i , a >. = <. k , j >. ) -> a e. ( Fmla ` suc (/) ) ) | 
						
							| 44 | 39 43 | sylbi |  |-  ( <. 2o , <. i , a >. >. = <. (/) , <. k , j >. >. -> a e. ( Fmla ` suc (/) ) ) | 
						
							| 45 | 36 44 | biimtrdi |  |-  ( ( k e. _om /\ j e. _om ) -> ( A.g i a = ( k e.g j ) -> a e. ( Fmla ` suc (/) ) ) ) | 
						
							| 46 | 45 | rexlimdva |  |-  ( k e. _om -> ( E. j e. _om A.g i a = ( k e.g j ) -> a e. ( Fmla ` suc (/) ) ) ) | 
						
							| 47 | 46 | rexlimiv |  |-  ( E. k e. _om E. j e. _om A.g i a = ( k e.g j ) -> a e. ( Fmla ` suc (/) ) ) | 
						
							| 48 | 33 47 | simplbiim |  |-  ( A.g i a e. ( Fmla ` (/) ) -> a e. ( Fmla ` suc (/) ) ) | 
						
							| 49 |  | gonanegoal |  |-  ( u |g v ) =/= A.g i a | 
						
							| 50 |  | eqneqall |  |-  ( ( u |g v ) = A.g i a -> ( ( u |g v ) =/= A.g i a -> a e. ( Fmla ` suc (/) ) ) ) | 
						
							| 51 | 49 50 | mpi |  |-  ( ( u |g v ) = A.g i a -> a e. ( Fmla ` suc (/) ) ) | 
						
							| 52 | 51 | eqcoms |  |-  ( A.g i a = ( u |g v ) -> a e. ( Fmla ` suc (/) ) ) | 
						
							| 53 | 52 | a1i |  |-  ( ( u e. ( Fmla ` (/) ) /\ v e. ( Fmla ` (/) ) ) -> ( A.g i a = ( u |g v ) -> a e. ( Fmla ` suc (/) ) ) ) | 
						
							| 54 | 53 | rexlimdva |  |-  ( u e. ( Fmla ` (/) ) -> ( E. v e. ( Fmla ` (/) ) A.g i a = ( u |g v ) -> a e. ( Fmla ` suc (/) ) ) ) | 
						
							| 55 |  | df-goal |  |-  A.g k u = <. 2o , <. k , u >. >. | 
						
							| 56 | 25 55 | eqeq12i |  |-  ( A.g i a = A.g k u <-> <. 2o , <. i , a >. >. = <. 2o , <. k , u >. >. ) | 
						
							| 57 | 37 38 | opth |  |-  ( <. 2o , <. i , a >. >. = <. 2o , <. k , u >. >. <-> ( 2o = 2o /\ <. i , a >. = <. k , u >. ) ) | 
						
							| 58 |  | vex |  |-  i e. _V | 
						
							| 59 |  | vex |  |-  a e. _V | 
						
							| 60 | 58 59 | opth |  |-  ( <. i , a >. = <. k , u >. <-> ( i = k /\ a = u ) ) | 
						
							| 61 |  | eleq1w |  |-  ( u = a -> ( u e. ( Fmla ` (/) ) <-> a e. ( Fmla ` (/) ) ) ) | 
						
							| 62 |  | fmlasssuc |  |-  ( (/) e. _om -> ( Fmla ` (/) ) C_ ( Fmla ` suc (/) ) ) | 
						
							| 63 | 24 62 | ax-mp |  |-  ( Fmla ` (/) ) C_ ( Fmla ` suc (/) ) | 
						
							| 64 | 63 | sseli |  |-  ( a e. ( Fmla ` (/) ) -> a e. ( Fmla ` suc (/) ) ) | 
						
							| 65 | 61 64 | biimtrdi |  |-  ( u = a -> ( u e. ( Fmla ` (/) ) -> a e. ( Fmla ` suc (/) ) ) ) | 
						
							| 66 | 65 | eqcoms |  |-  ( a = u -> ( u e. ( Fmla ` (/) ) -> a e. ( Fmla ` suc (/) ) ) ) | 
						
							| 67 | 60 66 | simplbiim |  |-  ( <. i , a >. = <. k , u >. -> ( u e. ( Fmla ` (/) ) -> a e. ( Fmla ` suc (/) ) ) ) | 
						
							| 68 | 57 67 | simplbiim |  |-  ( <. 2o , <. i , a >. >. = <. 2o , <. k , u >. >. -> ( u e. ( Fmla ` (/) ) -> a e. ( Fmla ` suc (/) ) ) ) | 
						
							| 69 | 68 | com12 |  |-  ( u e. ( Fmla ` (/) ) -> ( <. 2o , <. i , a >. >. = <. 2o , <. k , u >. >. -> a e. ( Fmla ` suc (/) ) ) ) | 
						
							| 70 | 69 | adantr |  |-  ( ( u e. ( Fmla ` (/) ) /\ k e. _om ) -> ( <. 2o , <. i , a >. >. = <. 2o , <. k , u >. >. -> a e. ( Fmla ` suc (/) ) ) ) | 
						
							| 71 | 56 70 | biimtrid |  |-  ( ( u e. ( Fmla ` (/) ) /\ k e. _om ) -> ( A.g i a = A.g k u -> a e. ( Fmla ` suc (/) ) ) ) | 
						
							| 72 | 71 | rexlimdva |  |-  ( u e. ( Fmla ` (/) ) -> ( E. k e. _om A.g i a = A.g k u -> a e. ( Fmla ` suc (/) ) ) ) | 
						
							| 73 | 54 72 | jaod |  |-  ( u e. ( Fmla ` (/) ) -> ( ( E. v e. ( Fmla ` (/) ) A.g i a = ( u |g v ) \/ E. k e. _om A.g i a = A.g k u ) -> a e. ( Fmla ` suc (/) ) ) ) | 
						
							| 74 | 73 | rexlimiv |  |-  ( E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) A.g i a = ( u |g v ) \/ E. k e. _om A.g i a = A.g k u ) -> a e. ( Fmla ` suc (/) ) ) | 
						
							| 75 | 48 74 | jaoi |  |-  ( ( A.g i a e. ( Fmla ` (/) ) \/ E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) A.g i a = ( u |g v ) \/ E. k e. _om A.g i a = A.g k u ) ) -> a e. ( Fmla ` suc (/) ) ) | 
						
							| 76 | 29 75 | sylbi |  |-  ( A.g i a e. ( Fmla ` suc (/) ) -> a e. ( Fmla ` suc (/) ) ) | 
						
							| 77 |  | goalrlem |  |-  ( y e. _om -> ( ( A.g i a e. ( Fmla ` suc y ) -> a e. ( Fmla ` suc y ) ) -> ( A.g i a e. ( Fmla ` suc suc y ) -> a e. ( Fmla ` suc suc y ) ) ) ) | 
						
							| 78 | 8 13 18 23 76 77 | finds |  |-  ( n e. _om -> ( A.g i a e. ( Fmla ` suc n ) -> a e. ( Fmla ` suc n ) ) ) | 
						
							| 79 | 78 | adantr |  |-  ( ( n e. _om /\ N = suc n ) -> ( A.g i a e. ( Fmla ` suc n ) -> a e. ( Fmla ` suc n ) ) ) | 
						
							| 80 |  | fveq2 |  |-  ( N = suc n -> ( Fmla ` N ) = ( Fmla ` suc n ) ) | 
						
							| 81 | 80 | eleq2d |  |-  ( N = suc n -> ( A.g i a e. ( Fmla ` N ) <-> A.g i a e. ( Fmla ` suc n ) ) ) | 
						
							| 82 | 80 | eleq2d |  |-  ( N = suc n -> ( a e. ( Fmla ` N ) <-> a e. ( Fmla ` suc n ) ) ) | 
						
							| 83 | 81 82 | imbi12d |  |-  ( N = suc n -> ( ( A.g i a e. ( Fmla ` N ) -> a e. ( Fmla ` N ) ) <-> ( A.g i a e. ( Fmla ` suc n ) -> a e. ( Fmla ` suc n ) ) ) ) | 
						
							| 84 | 83 | adantl |  |-  ( ( n e. _om /\ N = suc n ) -> ( ( A.g i a e. ( Fmla ` N ) -> a e. ( Fmla ` N ) ) <-> ( A.g i a e. ( Fmla ` suc n ) -> a e. ( Fmla ` suc n ) ) ) ) | 
						
							| 85 | 79 84 | mpbird |  |-  ( ( n e. _om /\ N = suc n ) -> ( A.g i a e. ( Fmla ` N ) -> a e. ( Fmla ` N ) ) ) | 
						
							| 86 | 85 | rexlimiva |  |-  ( E. n e. _om N = suc n -> ( A.g i a e. ( Fmla ` N ) -> a e. ( Fmla ` N ) ) ) | 
						
							| 87 | 3 86 | syl |  |-  ( ( N e. _om /\ N =/= (/) ) -> ( A.g i a e. ( Fmla ` N ) -> a e. ( Fmla ` N ) ) ) | 
						
							| 88 | 87 | impancom |  |-  ( ( N e. _om /\ A.g i a e. ( Fmla ` N ) ) -> ( N =/= (/) -> a e. ( Fmla ` N ) ) ) | 
						
							| 89 | 2 88 | mpd |  |-  ( ( N e. _om /\ A.g i a e. ( Fmla ` N ) ) -> a e. ( Fmla ` N ) ) |