| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano2 | ⊢ ( 𝑁  ∈  ω  →  suc  𝑁  ∈  ω ) | 
						
							| 2 |  | df-goal | ⊢ ∀𝑔 𝑖 𝑎  =  〈 2o ,  〈 𝑖 ,  𝑎 〉 〉 | 
						
							| 3 |  | opex | ⊢ 〈 2o ,  〈 𝑖 ,  𝑎 〉 〉  ∈  V | 
						
							| 4 | 2 3 | eqeltri | ⊢ ∀𝑔 𝑖 𝑎  ∈  V | 
						
							| 5 |  | isfmlasuc | ⊢ ( ( suc  𝑁  ∈  ω  ∧  ∀𝑔 𝑖 𝑎  ∈  V )  →  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  ↔  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ suc  𝑁 ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) ∀𝑔 𝑖 𝑎  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑗  ∈  ω ∀𝑔 𝑖 𝑎  =  ∀𝑔 𝑗 𝑢 ) ) ) ) | 
						
							| 6 | 1 4 5 | sylancl | ⊢ ( 𝑁  ∈  ω  →  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  ↔  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ suc  𝑁 ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) ∀𝑔 𝑖 𝑎  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑗  ∈  ω ∀𝑔 𝑖 𝑎  =  ∀𝑔 𝑗 𝑢 ) ) ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑁  ∈  ω  ∧  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  →  𝑎  ∈  ( Fmla ‘ suc  𝑁 ) ) )  →  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  ↔  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ suc  𝑁 ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) ∀𝑔 𝑖 𝑎  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑗  ∈  ω ∀𝑔 𝑖 𝑎  =  ∀𝑔 𝑗 𝑢 ) ) ) ) | 
						
							| 8 |  | fmlasssuc | ⊢ ( suc  𝑁  ∈  ω  →  ( Fmla ‘ suc  𝑁 )  ⊆  ( Fmla ‘ suc  suc  𝑁 ) ) | 
						
							| 9 | 1 8 | syl | ⊢ ( 𝑁  ∈  ω  →  ( Fmla ‘ suc  𝑁 )  ⊆  ( Fmla ‘ suc  suc  𝑁 ) ) | 
						
							| 10 | 9 | sseld | ⊢ ( 𝑁  ∈  ω  →  ( 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) | 
						
							| 11 | 10 | com12 | ⊢ ( 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  →  ( 𝑁  ∈  ω  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) | 
						
							| 12 | 11 | imim2i | ⊢ ( ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  →  𝑎  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  →  ( 𝑁  ∈  ω  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) ) | 
						
							| 13 | 12 | com23 | ⊢ ( ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  →  𝑎  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( 𝑁  ∈  ω  →  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) ) | 
						
							| 14 | 13 | impcom | ⊢ ( ( 𝑁  ∈  ω  ∧  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  →  𝑎  ∈  ( Fmla ‘ suc  𝑁 ) ) )  →  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) | 
						
							| 15 |  | gonanegoal | ⊢ ( 𝑢 ⊼𝑔 𝑣 )  ≠  ∀𝑔 𝑖 𝑎 | 
						
							| 16 |  | eqneqall | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑖 𝑎  →  ( ( 𝑢 ⊼𝑔 𝑣 )  ≠  ∀𝑔 𝑖 𝑎  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) | 
						
							| 17 | 15 16 | mpi | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 )  =  ∀𝑔 𝑖 𝑎  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) | 
						
							| 18 | 17 | eqcoms | ⊢ ( ∀𝑔 𝑖 𝑎  =  ( 𝑢 ⊼𝑔 𝑣 )  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) | 
						
							| 19 | 18 | a1i | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ suc  𝑁 ) )  ∧  𝑣  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( ∀𝑔 𝑖 𝑎  =  ( 𝑢 ⊼𝑔 𝑣 )  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) | 
						
							| 20 | 19 | rexlimdva | ⊢ ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) ∀𝑔 𝑖 𝑎  =  ( 𝑢 ⊼𝑔 𝑣 )  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) | 
						
							| 21 |  | df-goal | ⊢ ∀𝑔 𝑗 𝑢  =  〈 2o ,  〈 𝑗 ,  𝑢 〉 〉 | 
						
							| 22 | 2 21 | eqeq12i | ⊢ ( ∀𝑔 𝑖 𝑎  =  ∀𝑔 𝑗 𝑢  ↔  〈 2o ,  〈 𝑖 ,  𝑎 〉 〉  =  〈 2o ,  〈 𝑗 ,  𝑢 〉 〉 ) | 
						
							| 23 |  | 2oex | ⊢ 2o  ∈  V | 
						
							| 24 |  | opex | ⊢ 〈 𝑖 ,  𝑎 〉  ∈  V | 
						
							| 25 | 23 24 | opth | ⊢ ( 〈 2o ,  〈 𝑖 ,  𝑎 〉 〉  =  〈 2o ,  〈 𝑗 ,  𝑢 〉 〉  ↔  ( 2o  =  2o  ∧  〈 𝑖 ,  𝑎 〉  =  〈 𝑗 ,  𝑢 〉 ) ) | 
						
							| 26 | 22 25 | bitri | ⊢ ( ∀𝑔 𝑖 𝑎  =  ∀𝑔 𝑗 𝑢  ↔  ( 2o  =  2o  ∧  〈 𝑖 ,  𝑎 〉  =  〈 𝑗 ,  𝑢 〉 ) ) | 
						
							| 27 |  | vex | ⊢ 𝑖  ∈  V | 
						
							| 28 |  | vex | ⊢ 𝑎  ∈  V | 
						
							| 29 | 27 28 | opth | ⊢ ( 〈 𝑖 ,  𝑎 〉  =  〈 𝑗 ,  𝑢 〉  ↔  ( 𝑖  =  𝑗  ∧  𝑎  =  𝑢 ) ) | 
						
							| 30 |  | eleq1w | ⊢ ( 𝑢  =  𝑎  →  ( 𝑢  ∈  ( Fmla ‘ suc  𝑁 )  ↔  𝑎  ∈  ( Fmla ‘ suc  𝑁 ) ) ) | 
						
							| 31 | 30 | eqcoms | ⊢ ( 𝑎  =  𝑢  →  ( 𝑢  ∈  ( Fmla ‘ suc  𝑁 )  ↔  𝑎  ∈  ( Fmla ‘ suc  𝑁 ) ) ) | 
						
							| 32 | 31 11 | biimtrdi | ⊢ ( 𝑎  =  𝑢  →  ( 𝑢  ∈  ( Fmla ‘ suc  𝑁 )  →  ( 𝑁  ∈  ω  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) ) | 
						
							| 33 | 32 | impcomd | ⊢ ( 𝑎  =  𝑢  →  ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ suc  𝑁 ) )  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) | 
						
							| 34 | 29 33 | simplbiim | ⊢ ( 〈 𝑖 ,  𝑎 〉  =  〈 𝑗 ,  𝑢 〉  →  ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ suc  𝑁 ) )  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) | 
						
							| 35 | 26 34 | simplbiim | ⊢ ( ∀𝑔 𝑖 𝑎  =  ∀𝑔 𝑗 𝑢  →  ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ suc  𝑁 ) )  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) | 
						
							| 36 | 35 | com12 | ⊢ ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( ∀𝑔 𝑖 𝑎  =  ∀𝑔 𝑗 𝑢  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ suc  𝑁 ) )  ∧  𝑗  ∈  ω )  →  ( ∀𝑔 𝑖 𝑎  =  ∀𝑔 𝑗 𝑢  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) | 
						
							| 38 | 37 | rexlimdva | ⊢ ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( ∃ 𝑗  ∈  ω ∀𝑔 𝑖 𝑎  =  ∀𝑔 𝑗 𝑢  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) | 
						
							| 39 | 20 38 | jaod | ⊢ ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) ∀𝑔 𝑖 𝑎  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑗  ∈  ω ∀𝑔 𝑖 𝑎  =  ∀𝑔 𝑗 𝑢 )  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) | 
						
							| 40 | 39 | rexlimdva | ⊢ ( 𝑁  ∈  ω  →  ( ∃ 𝑢  ∈  ( Fmla ‘ suc  𝑁 ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) ∀𝑔 𝑖 𝑎  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑗  ∈  ω ∀𝑔 𝑖 𝑎  =  ∀𝑔 𝑗 𝑢 )  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝑁  ∈  ω  ∧  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  →  𝑎  ∈  ( Fmla ‘ suc  𝑁 ) ) )  →  ( ∃ 𝑢  ∈  ( Fmla ‘ suc  𝑁 ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) ∀𝑔 𝑖 𝑎  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑗  ∈  ω ∀𝑔 𝑖 𝑎  =  ∀𝑔 𝑗 𝑢 )  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) | 
						
							| 42 | 14 41 | jaod | ⊢ ( ( 𝑁  ∈  ω  ∧  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  →  𝑎  ∈  ( Fmla ‘ suc  𝑁 ) ) )  →  ( ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ suc  𝑁 ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) ∀𝑔 𝑖 𝑎  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑗  ∈  ω ∀𝑔 𝑖 𝑎  =  ∀𝑔 𝑗 𝑢 ) )  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) | 
						
							| 43 | 7 42 | sylbid | ⊢ ( ( 𝑁  ∈  ω  ∧  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  →  𝑎  ∈  ( Fmla ‘ suc  𝑁 ) ) )  →  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) | 
						
							| 44 | 43 | ex | ⊢ ( 𝑁  ∈  ω  →  ( ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  →  𝑎  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( ∀𝑔 𝑖 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) ) |