Metamath Proof Explorer


Theorem goalrlem

Description: Lemma for goalr (induction step). (Contributed by AV, 22-Oct-2023)

Ref Expression
Assertion goalrlem N ω 𝑔 i a Fmla suc N a Fmla suc N 𝑔 i a Fmla suc suc N a Fmla suc suc N

Proof

Step Hyp Ref Expression
1 peano2 N ω suc N ω
2 df-goal 𝑔 i a = 2 𝑜 i a
3 opex 2 𝑜 i a V
4 2 3 eqeltri 𝑔 i a V
5 isfmlasuc suc N ω 𝑔 i a V 𝑔 i a Fmla suc suc N 𝑔 i a Fmla suc N u Fmla suc N v Fmla suc N 𝑔 i a = u 𝑔 v j ω 𝑔 i a = 𝑔 j u
6 1 4 5 sylancl N ω 𝑔 i a Fmla suc suc N 𝑔 i a Fmla suc N u Fmla suc N v Fmla suc N 𝑔 i a = u 𝑔 v j ω 𝑔 i a = 𝑔 j u
7 6 adantr N ω 𝑔 i a Fmla suc N a Fmla suc N 𝑔 i a Fmla suc suc N 𝑔 i a Fmla suc N u Fmla suc N v Fmla suc N 𝑔 i a = u 𝑔 v j ω 𝑔 i a = 𝑔 j u
8 fmlasssuc suc N ω Fmla suc N Fmla suc suc N
9 1 8 syl N ω Fmla suc N Fmla suc suc N
10 9 sseld N ω a Fmla suc N a Fmla suc suc N
11 10 com12 a Fmla suc N N ω a Fmla suc suc N
12 11 imim2i 𝑔 i a Fmla suc N a Fmla suc N 𝑔 i a Fmla suc N N ω a Fmla suc suc N
13 12 com23 𝑔 i a Fmla suc N a Fmla suc N N ω 𝑔 i a Fmla suc N a Fmla suc suc N
14 13 impcom N ω 𝑔 i a Fmla suc N a Fmla suc N 𝑔 i a Fmla suc N a Fmla suc suc N
15 gonanegoal u 𝑔 v 𝑔 i a
16 eqneqall u 𝑔 v = 𝑔 i a u 𝑔 v 𝑔 i a a Fmla suc suc N
17 15 16 mpi u 𝑔 v = 𝑔 i a a Fmla suc suc N
18 17 eqcoms 𝑔 i a = u 𝑔 v a Fmla suc suc N
19 18 a1i N ω u Fmla suc N v Fmla suc N 𝑔 i a = u 𝑔 v a Fmla suc suc N
20 19 rexlimdva N ω u Fmla suc N v Fmla suc N 𝑔 i a = u 𝑔 v a Fmla suc suc N
21 df-goal 𝑔 j u = 2 𝑜 j u
22 2 21 eqeq12i 𝑔 i a = 𝑔 j u 2 𝑜 i a = 2 𝑜 j u
23 2oex 2 𝑜 V
24 opex i a V
25 23 24 opth 2 𝑜 i a = 2 𝑜 j u 2 𝑜 = 2 𝑜 i a = j u
26 22 25 bitri 𝑔 i a = 𝑔 j u 2 𝑜 = 2 𝑜 i a = j u
27 vex i V
28 vex a V
29 27 28 opth i a = j u i = j a = u
30 eleq1w u = a u Fmla suc N a Fmla suc N
31 30 eqcoms a = u u Fmla suc N a Fmla suc N
32 31 11 syl6bi a = u u Fmla suc N N ω a Fmla suc suc N
33 32 impcomd a = u N ω u Fmla suc N a Fmla suc suc N
34 29 33 simplbiim i a = j u N ω u Fmla suc N a Fmla suc suc N
35 26 34 simplbiim 𝑔 i a = 𝑔 j u N ω u Fmla suc N a Fmla suc suc N
36 35 com12 N ω u Fmla suc N 𝑔 i a = 𝑔 j u a Fmla suc suc N
37 36 adantr N ω u Fmla suc N j ω 𝑔 i a = 𝑔 j u a Fmla suc suc N
38 37 rexlimdva N ω u Fmla suc N j ω 𝑔 i a = 𝑔 j u a Fmla suc suc N
39 20 38 jaod N ω u Fmla suc N v Fmla suc N 𝑔 i a = u 𝑔 v j ω 𝑔 i a = 𝑔 j u a Fmla suc suc N
40 39 rexlimdva N ω u Fmla suc N v Fmla suc N 𝑔 i a = u 𝑔 v j ω 𝑔 i a = 𝑔 j u a Fmla suc suc N
41 40 adantr N ω 𝑔 i a Fmla suc N a Fmla suc N u Fmla suc N v Fmla suc N 𝑔 i a = u 𝑔 v j ω 𝑔 i a = 𝑔 j u a Fmla suc suc N
42 14 41 jaod N ω 𝑔 i a Fmla suc N a Fmla suc N 𝑔 i a Fmla suc N u Fmla suc N v Fmla suc N 𝑔 i a = u 𝑔 v j ω 𝑔 i a = 𝑔 j u a Fmla suc suc N
43 7 42 sylbid N ω 𝑔 i a Fmla suc N a Fmla suc N 𝑔 i a Fmla suc suc N a Fmla suc suc N
44 43 ex N ω 𝑔 i a Fmla suc N a Fmla suc N 𝑔 i a Fmla suc suc N a Fmla suc suc N