Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
|
2 |
|
eqeq1 |
|
3 |
2
|
rexbidv |
|
4 |
|
eqeq1 |
|
5 |
4
|
rexbidv |
|
6 |
3 5
|
orbi12d |
|
7 |
6
|
rexbidv |
|
8 |
2
|
2rexbidv |
|
9 |
7 8
|
orbi12d |
|
10 |
1 9
|
elab |
|
11 |
|
gonar |
|
12 |
|
elndif |
|
13 |
12
|
adantr |
|
14 |
13
|
intnanrd |
|
15 |
11 14
|
syl |
|
16 |
15
|
ex |
|
17 |
16
|
con2d |
|
18 |
17
|
impl |
|
19 |
|
elneeldif |
|
20 |
19
|
necomd |
|
21 |
20
|
ancoms |
|
22 |
21
|
neneqd |
|
23 |
22
|
orcd |
|
24 |
|
ianor |
|
25 |
|
vex |
|
26 |
|
vex |
|
27 |
25 26
|
opth |
|
28 |
24 27
|
xchnxbir |
|
29 |
23 28
|
sylibr |
|
30 |
29
|
olcd |
|
31 |
|
ianor |
|
32 |
|
gonafv |
|
33 |
32
|
el2v |
|
34 |
|
gonafv |
|
35 |
34
|
el2v |
|
36 |
33 35
|
eqeq12i |
|
37 |
|
1oex |
|
38 |
|
opex |
|
39 |
37 38
|
opth |
|
40 |
36 39
|
bitri |
|
41 |
31 40
|
xchnxbir |
|
42 |
30 41
|
sylibr |
|
43 |
42
|
ralrimivw |
|
44 |
43
|
ralrimiva |
|
45 |
44
|
adantl |
|
46 |
45
|
adantr |
|
47 |
|
gonanegoal |
|
48 |
47
|
neii |
|
49 |
48
|
a1i |
|
50 |
49
|
ralrimivw |
|
51 |
50
|
ralrimivw |
|
52 |
|
r19.26 |
|
53 |
46 51 52
|
sylanbrc |
|
54 |
18 53
|
jca |
|
55 |
|
eleq1 |
|
56 |
55
|
notbid |
|
57 |
|
eqeq1 |
|
58 |
57
|
notbid |
|
59 |
58
|
ralbidv |
|
60 |
|
eqeq1 |
|
61 |
60
|
notbid |
|
62 |
61
|
ralbidv |
|
63 |
59 62
|
anbi12d |
|
64 |
63
|
ralbidv |
|
65 |
56 64
|
anbi12d |
|
66 |
54 65
|
syl5ibrcom |
|
67 |
66
|
rexlimdva |
|
68 |
|
goalr |
|
69 |
68 12
|
syl |
|
70 |
69
|
ex |
|
71 |
70
|
con2d |
|
72 |
71
|
imp |
|
73 |
72
|
adantr |
|
74 |
|
gonanegoal |
|
75 |
74
|
nesymi |
|
76 |
75
|
a1i |
|
77 |
76
|
ralrimivw |
|
78 |
77
|
ralrimivw |
|
79 |
22
|
olcd |
|
80 |
|
ianor |
|
81 |
|
vex |
|
82 |
81 25
|
opth |
|
83 |
80 82
|
xchnxbir |
|
84 |
79 83
|
sylibr |
|
85 |
84
|
olcd |
|
86 |
|
ianor |
|
87 |
|
2oex |
|
88 |
|
opex |
|
89 |
87 88
|
opth |
|
90 |
86 89
|
xchnxbir |
|
91 |
|
df-goal |
|
92 |
|
df-goal |
|
93 |
91 92
|
eqeq12i |
|
94 |
90 93
|
xchnxbir |
|
95 |
85 94
|
sylibr |
|
96 |
95
|
ralrimivw |
|
97 |
96
|
ralrimiva |
|
98 |
97
|
adantl |
|
99 |
98
|
adantr |
|
100 |
|
r19.26 |
|
101 |
78 99 100
|
sylanbrc |
|
102 |
73 101
|
jca |
|
103 |
|
eleq1 |
|
104 |
103
|
notbid |
|
105 |
|
eqeq1 |
|
106 |
105
|
notbid |
|
107 |
106
|
ralbidv |
|
108 |
|
eqeq1 |
|
109 |
108
|
notbid |
|
110 |
109
|
ralbidv |
|
111 |
107 110
|
anbi12d |
|
112 |
111
|
ralbidv |
|
113 |
104 112
|
anbi12d |
|
114 |
113
|
eqcoms |
|
115 |
102 114
|
syl5ibcom |
|
116 |
115
|
rexlimdva |
|
117 |
67 116
|
jaod |
|
118 |
117
|
rexlimdva |
|
119 |
|
elndif |
|
120 |
119
|
adantl |
|
121 |
120
|
intnand |
|
122 |
11 121
|
syl |
|
123 |
122
|
ex |
|
124 |
123
|
con2d |
|
125 |
124
|
impl |
|
126 |
|
elneeldif |
|
127 |
126
|
necomd |
|
128 |
127
|
ancoms |
|
129 |
128
|
neneqd |
|
130 |
129
|
olcd |
|
131 |
130 28
|
sylibr |
|
132 |
131
|
intnand |
|
133 |
132 40
|
sylnibr |
|
134 |
133
|
ralrimiva |
|
135 |
134
|
ralrimivw |
|
136 |
135
|
adantl |
|
137 |
48
|
a1i |
|
138 |
137
|
ralrimivw |
|
139 |
138
|
ralrimivw |
|
140 |
136 139 52
|
sylanbrc |
|
141 |
125 140
|
jca |
|
142 |
|
eleq1 |
|
143 |
142
|
notbid |
|
144 |
|
eqeq1 |
|
145 |
144
|
notbid |
|
146 |
145
|
ralbidv |
|
147 |
|
eqeq1 |
|
148 |
147
|
notbid |
|
149 |
148
|
ralbidv |
|
150 |
146 149
|
anbi12d |
|
151 |
150
|
ralbidv |
|
152 |
143 151
|
anbi12d |
|
153 |
152
|
eqcoms |
|
154 |
141 153
|
syl5ibcom |
|
155 |
154
|
rexlimdva |
|
156 |
155
|
rexlimdva |
|
157 |
118 156
|
jaod |
|
158 |
|
isfmlasuc |
|
159 |
158
|
elvd |
|
160 |
159
|
notbid |
|
161 |
|
ioran |
|
162 |
|
ralnex |
|
163 |
|
ralnex |
|
164 |
162 163
|
anbi12i |
|
165 |
|
ioran |
|
166 |
164 165
|
bitr4i |
|
167 |
166
|
ralbii |
|
168 |
|
ralnex |
|
169 |
167 168
|
bitr2i |
|
170 |
169
|
anbi2i |
|
171 |
161 170
|
bitri |
|
172 |
160 171
|
bitrdi |
|
173 |
157 172
|
sylibrd |
|
174 |
10 173
|
syl5bi |
|
175 |
174
|
ralrimiv |
|
176 |
|
disjr |
|
177 |
175 176
|
sylibr |
|