| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( u = s -> ( 1st ` u ) = ( 1st ` s ) ) | 
						
							| 2 |  | fveq2 |  |-  ( v = r -> ( 1st ` v ) = ( 1st ` r ) ) | 
						
							| 3 | 1 2 | oveqan12d |  |-  ( ( u = s /\ v = r ) -> ( ( 1st ` u ) |g ( 1st ` v ) ) = ( ( 1st ` s ) |g ( 1st ` r ) ) ) | 
						
							| 4 | 3 | eqeq2d |  |-  ( ( u = s /\ v = r ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> x = ( ( 1st ` s ) |g ( 1st ` r ) ) ) ) | 
						
							| 5 |  | fveq2 |  |-  ( u = s -> ( 2nd ` u ) = ( 2nd ` s ) ) | 
						
							| 6 |  | fveq2 |  |-  ( v = r -> ( 2nd ` v ) = ( 2nd ` r ) ) | 
						
							| 7 | 5 6 | ineqan12d |  |-  ( ( u = s /\ v = r ) -> ( ( 2nd ` u ) i^i ( 2nd ` v ) ) = ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) | 
						
							| 8 | 7 | difeq2d |  |-  ( ( u = s /\ v = r ) -> ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) | 
						
							| 9 | 8 | eqeq2d |  |-  ( ( u = s /\ v = r ) -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) <-> y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) | 
						
							| 10 | 4 9 | anbi12d |  |-  ( ( u = s /\ v = r ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) ) | 
						
							| 11 | 10 | cbvrexdva |  |-  ( u = s -> ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. r e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) ) | 
						
							| 12 |  | simpr |  |-  ( ( u = s /\ i = j ) -> i = j ) | 
						
							| 13 | 1 | adantr |  |-  ( ( u = s /\ i = j ) -> ( 1st ` u ) = ( 1st ` s ) ) | 
						
							| 14 | 12 13 | goaleq12d |  |-  ( ( u = s /\ i = j ) -> A.g i ( 1st ` u ) = A.g j ( 1st ` s ) ) | 
						
							| 15 | 14 | eqeq2d |  |-  ( ( u = s /\ i = j ) -> ( x = A.g i ( 1st ` u ) <-> x = A.g j ( 1st ` s ) ) ) | 
						
							| 16 |  | opeq1 |  |-  ( i = j -> <. i , k >. = <. j , k >. ) | 
						
							| 17 | 16 | sneqd |  |-  ( i = j -> { <. i , k >. } = { <. j , k >. } ) | 
						
							| 18 |  | sneq |  |-  ( i = j -> { i } = { j } ) | 
						
							| 19 | 18 | difeq2d |  |-  ( i = j -> ( _om \ { i } ) = ( _om \ { j } ) ) | 
						
							| 20 | 19 | reseq2d |  |-  ( i = j -> ( f |` ( _om \ { i } ) ) = ( f |` ( _om \ { j } ) ) ) | 
						
							| 21 | 17 20 | uneq12d |  |-  ( i = j -> ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) = ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( u = s /\ i = j ) -> ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) = ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) ) | 
						
							| 23 | 5 | adantr |  |-  ( ( u = s /\ i = j ) -> ( 2nd ` u ) = ( 2nd ` s ) ) | 
						
							| 24 | 22 23 | eleq12d |  |-  ( ( u = s /\ i = j ) -> ( ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) <-> ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) ) ) | 
						
							| 25 | 24 | ralbidv |  |-  ( ( u = s /\ i = j ) -> ( A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) <-> A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) ) ) | 
						
							| 26 | 25 | rabbidv |  |-  ( ( u = s /\ i = j ) -> { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) | 
						
							| 27 | 26 | eqeq2d |  |-  ( ( u = s /\ i = j ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } <-> y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) | 
						
							| 28 | 15 27 | anbi12d |  |-  ( ( u = s /\ i = j ) -> ( ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) ) | 
						
							| 29 | 28 | cbvrexdva |  |-  ( u = s -> ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) ) | 
						
							| 30 | 11 29 | orbi12d |  |-  ( u = s -> ( ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. r e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) \/ E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) ) ) | 
						
							| 31 | 30 | cbvrexvw |  |-  ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. s e. ( ( M Sat E ) ` N ) ( E. r e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) \/ E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) ) | 
						
							| 32 |  | simp-4l |  |-  ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) /\ v e. ( ( M Sat E ) ` N ) ) -> Fun ( ( M Sat E ) ` N ) ) | 
						
							| 33 |  | simpr |  |-  ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) -> u e. ( ( M Sat E ) ` N ) ) | 
						
							| 34 | 33 | anim1i |  |-  ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) /\ v e. ( ( M Sat E ) ` N ) ) -> ( u e. ( ( M Sat E ) ` N ) /\ v e. ( ( M Sat E ) ` N ) ) ) | 
						
							| 35 |  | simpr |  |-  ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) -> s e. ( ( M Sat E ) ` N ) ) | 
						
							| 36 | 35 | anim1i |  |-  ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) -> ( s e. ( ( M Sat E ) ` N ) /\ r e. ( ( M Sat E ) ` N ) ) ) | 
						
							| 37 | 36 | ad2antrr |  |-  ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) /\ v e. ( ( M Sat E ) ` N ) ) -> ( s e. ( ( M Sat E ) ` N ) /\ r e. ( ( M Sat E ) ` N ) ) ) | 
						
							| 38 |  | satffunlem |  |-  ( ( ( Fun ( ( M Sat E ) ` N ) /\ ( u e. ( ( M Sat E ) ` N ) /\ v e. ( ( M Sat E ) ` N ) ) /\ ( s e. ( ( M Sat E ) ` N ) /\ r e. ( ( M Sat E ) ` N ) ) ) /\ ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) /\ ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) -> z = y ) | 
						
							| 39 | 38 | eqcomd |  |-  ( ( ( Fun ( ( M Sat E ) ` N ) /\ ( u e. ( ( M Sat E ) ` N ) /\ v e. ( ( M Sat E ) ` N ) ) /\ ( s e. ( ( M Sat E ) ` N ) /\ r e. ( ( M Sat E ) ` N ) ) ) /\ ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) /\ ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) -> y = z ) | 
						
							| 40 | 39 | 3exp |  |-  ( ( Fun ( ( M Sat E ) ` N ) /\ ( u e. ( ( M Sat E ) ` N ) /\ v e. ( ( M Sat E ) ` N ) ) /\ ( s e. ( ( M Sat E ) ` N ) /\ r e. ( ( M Sat E ) ` N ) ) ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) ) | 
						
							| 41 | 32 34 37 40 | syl3anc |  |-  ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) /\ v e. ( ( M Sat E ) ` N ) ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) ) | 
						
							| 42 | 41 | rexlimdva |  |-  ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) ) | 
						
							| 43 |  | eqeq1 |  |-  ( x = A.g i ( 1st ` u ) -> ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) <-> A.g i ( 1st ` u ) = ( ( 1st ` s ) |g ( 1st ` r ) ) ) ) | 
						
							| 44 |  | df-goal |  |-  A.g i ( 1st ` u ) = <. 2o , <. i , ( 1st ` u ) >. >. | 
						
							| 45 |  | fvex |  |-  ( 1st ` s ) e. _V | 
						
							| 46 |  | fvex |  |-  ( 1st ` r ) e. _V | 
						
							| 47 |  | gonafv |  |-  ( ( ( 1st ` s ) e. _V /\ ( 1st ` r ) e. _V ) -> ( ( 1st ` s ) |g ( 1st ` r ) ) = <. 1o , <. ( 1st ` s ) , ( 1st ` r ) >. >. ) | 
						
							| 48 | 45 46 47 | mp2an |  |-  ( ( 1st ` s ) |g ( 1st ` r ) ) = <. 1o , <. ( 1st ` s ) , ( 1st ` r ) >. >. | 
						
							| 49 | 44 48 | eqeq12i |  |-  ( A.g i ( 1st ` u ) = ( ( 1st ` s ) |g ( 1st ` r ) ) <-> <. 2o , <. i , ( 1st ` u ) >. >. = <. 1o , <. ( 1st ` s ) , ( 1st ` r ) >. >. ) | 
						
							| 50 |  | 2oex |  |-  2o e. _V | 
						
							| 51 |  | opex |  |-  <. i , ( 1st ` u ) >. e. _V | 
						
							| 52 | 50 51 | opth |  |-  ( <. 2o , <. i , ( 1st ` u ) >. >. = <. 1o , <. ( 1st ` s ) , ( 1st ` r ) >. >. <-> ( 2o = 1o /\ <. i , ( 1st ` u ) >. = <. ( 1st ` s ) , ( 1st ` r ) >. ) ) | 
						
							| 53 |  | 1one2o |  |-  1o =/= 2o | 
						
							| 54 |  | df-ne |  |-  ( 1o =/= 2o <-> -. 1o = 2o ) | 
						
							| 55 |  | pm2.21 |  |-  ( -. 1o = 2o -> ( 1o = 2o -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) -> y = z ) ) ) | 
						
							| 56 | 54 55 | sylbi |  |-  ( 1o =/= 2o -> ( 1o = 2o -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) -> y = z ) ) ) | 
						
							| 57 | 53 56 | ax-mp |  |-  ( 1o = 2o -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) -> y = z ) ) | 
						
							| 58 | 57 | eqcoms |  |-  ( 2o = 1o -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) -> y = z ) ) | 
						
							| 59 | 58 | adantr |  |-  ( ( 2o = 1o /\ <. i , ( 1st ` u ) >. = <. ( 1st ` s ) , ( 1st ` r ) >. ) -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) -> y = z ) ) | 
						
							| 60 | 52 59 | sylbi |  |-  ( <. 2o , <. i , ( 1st ` u ) >. >. = <. 1o , <. ( 1st ` s ) , ( 1st ` r ) >. >. -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) -> y = z ) ) | 
						
							| 61 | 49 60 | sylbi |  |-  ( A.g i ( 1st ` u ) = ( ( 1st ` s ) |g ( 1st ` r ) ) -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) -> y = z ) ) | 
						
							| 62 | 43 61 | biimtrdi |  |-  ( x = A.g i ( 1st ` u ) -> ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) -> y = z ) ) ) | 
						
							| 63 | 62 | impd |  |-  ( x = A.g i ( 1st ` u ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) | 
						
							| 64 | 63 | adantr |  |-  ( ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) | 
						
							| 65 | 64 | a1i |  |-  ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) /\ i e. _om ) -> ( ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) ) | 
						
							| 66 | 65 | rexlimdva |  |-  ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) ) | 
						
							| 67 | 42 66 | jaod |  |-  ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) ) | 
						
							| 68 | 67 | rexlimdva |  |-  ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) ) | 
						
							| 69 | 68 | com23 |  |-  ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> y = z ) ) ) | 
						
							| 70 | 69 | rexlimdva |  |-  ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) -> ( E. r e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> y = z ) ) ) | 
						
							| 71 |  | eqeq1 |  |-  ( x = A.g j ( 1st ` s ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> A.g j ( 1st ` s ) = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 72 |  | df-goal |  |-  A.g j ( 1st ` s ) = <. 2o , <. j , ( 1st ` s ) >. >. | 
						
							| 73 |  | fvex |  |-  ( 1st ` u ) e. _V | 
						
							| 74 |  | fvex |  |-  ( 1st ` v ) e. _V | 
						
							| 75 |  | gonafv |  |-  ( ( ( 1st ` u ) e. _V /\ ( 1st ` v ) e. _V ) -> ( ( 1st ` u ) |g ( 1st ` v ) ) = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. ) | 
						
							| 76 | 73 74 75 | mp2an |  |-  ( ( 1st ` u ) |g ( 1st ` v ) ) = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. | 
						
							| 77 | 72 76 | eqeq12i |  |-  ( A.g j ( 1st ` s ) = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> <. 2o , <. j , ( 1st ` s ) >. >. = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. ) | 
						
							| 78 |  | opex |  |-  <. j , ( 1st ` s ) >. e. _V | 
						
							| 79 | 50 78 | opth |  |-  ( <. 2o , <. j , ( 1st ` s ) >. >. = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. <-> ( 2o = 1o /\ <. j , ( 1st ` s ) >. = <. ( 1st ` u ) , ( 1st ` v ) >. ) ) | 
						
							| 80 |  | pm2.21 |  |-  ( -. 1o = 2o -> ( 1o = 2o -> y = z ) ) | 
						
							| 81 | 54 80 | sylbi |  |-  ( 1o =/= 2o -> ( 1o = 2o -> y = z ) ) | 
						
							| 82 | 53 81 | ax-mp |  |-  ( 1o = 2o -> y = z ) | 
						
							| 83 | 82 | eqcoms |  |-  ( 2o = 1o -> y = z ) | 
						
							| 84 | 83 | adantr |  |-  ( ( 2o = 1o /\ <. j , ( 1st ` s ) >. = <. ( 1st ` u ) , ( 1st ` v ) >. ) -> y = z ) | 
						
							| 85 | 79 84 | sylbi |  |-  ( <. 2o , <. j , ( 1st ` s ) >. >. = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. -> y = z ) | 
						
							| 86 | 77 85 | sylbi |  |-  ( A.g j ( 1st ` s ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> y = z ) | 
						
							| 87 | 71 86 | biimtrdi |  |-  ( x = A.g j ( 1st ` s ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> y = z ) ) | 
						
							| 88 | 87 | adantr |  |-  ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> y = z ) ) | 
						
							| 89 | 88 | com12 |  |-  ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) | 
						
							| 90 | 89 | adantr |  |-  ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) | 
						
							| 91 | 90 | a1i |  |-  ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) /\ v e. ( ( M Sat E ) ` N ) ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) ) | 
						
							| 92 | 91 | rexlimdva |  |-  ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) ) | 
						
							| 93 |  | eqeq1 |  |-  ( x = A.g i ( 1st ` u ) -> ( x = A.g j ( 1st ` s ) <-> A.g i ( 1st ` u ) = A.g j ( 1st ` s ) ) ) | 
						
							| 94 | 44 72 | eqeq12i |  |-  ( A.g i ( 1st ` u ) = A.g j ( 1st ` s ) <-> <. 2o , <. i , ( 1st ` u ) >. >. = <. 2o , <. j , ( 1st ` s ) >. >. ) | 
						
							| 95 | 50 51 | opth |  |-  ( <. 2o , <. i , ( 1st ` u ) >. >. = <. 2o , <. j , ( 1st ` s ) >. >. <-> ( 2o = 2o /\ <. i , ( 1st ` u ) >. = <. j , ( 1st ` s ) >. ) ) | 
						
							| 96 |  | vex |  |-  i e. _V | 
						
							| 97 | 96 73 | opth |  |-  ( <. i , ( 1st ` u ) >. = <. j , ( 1st ` s ) >. <-> ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) | 
						
							| 98 | 97 | anbi2i |  |-  ( ( 2o = 2o /\ <. i , ( 1st ` u ) >. = <. j , ( 1st ` s ) >. ) <-> ( 2o = 2o /\ ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) ) | 
						
							| 99 | 94 95 98 | 3bitri |  |-  ( A.g i ( 1st ` u ) = A.g j ( 1st ` s ) <-> ( 2o = 2o /\ ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) ) | 
						
							| 100 | 93 99 | bitrdi |  |-  ( x = A.g i ( 1st ` u ) -> ( x = A.g j ( 1st ` s ) <-> ( 2o = 2o /\ ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) ) ) | 
						
							| 101 | 100 | adantl |  |-  ( ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) /\ i e. _om ) /\ x = A.g i ( 1st ` u ) ) -> ( x = A.g j ( 1st ` s ) <-> ( 2o = 2o /\ ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) ) ) | 
						
							| 102 |  | funfv1st2nd |  |-  ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) -> ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) ) | 
						
							| 103 | 102 | ex |  |-  ( Fun ( ( M Sat E ) ` N ) -> ( s e. ( ( M Sat E ) ` N ) -> ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) ) ) | 
						
							| 104 |  | funfv1st2nd |  |-  ( ( Fun ( ( M Sat E ) ` N ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( ( ( M Sat E ) ` N ) ` ( 1st ` u ) ) = ( 2nd ` u ) ) | 
						
							| 105 | 104 | ex |  |-  ( Fun ( ( M Sat E ) ` N ) -> ( u e. ( ( M Sat E ) ` N ) -> ( ( ( M Sat E ) ` N ) ` ( 1st ` u ) ) = ( 2nd ` u ) ) ) | 
						
							| 106 |  | fveqeq2 |  |-  ( ( 1st ` u ) = ( 1st ` s ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` u ) ) = ( 2nd ` u ) <-> ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` u ) ) ) | 
						
							| 107 |  | eqtr2 |  |-  ( ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` u ) /\ ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) ) -> ( 2nd ` u ) = ( 2nd ` s ) ) | 
						
							| 108 |  | opeq1 |  |-  ( j = i -> <. j , k >. = <. i , k >. ) | 
						
							| 109 | 108 | sneqd |  |-  ( j = i -> { <. j , k >. } = { <. i , k >. } ) | 
						
							| 110 |  | sneq |  |-  ( j = i -> { j } = { i } ) | 
						
							| 111 | 110 | difeq2d |  |-  ( j = i -> ( _om \ { j } ) = ( _om \ { i } ) ) | 
						
							| 112 | 111 | reseq2d |  |-  ( j = i -> ( f |` ( _om \ { j } ) ) = ( f |` ( _om \ { i } ) ) ) | 
						
							| 113 | 109 112 | uneq12d |  |-  ( j = i -> ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) = ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) ) | 
						
							| 114 | 113 | eqcoms |  |-  ( i = j -> ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) = ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) ) | 
						
							| 115 | 114 | adantl |  |-  ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) = ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) ) | 
						
							| 116 |  | simpl |  |-  ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> ( 2nd ` u ) = ( 2nd ` s ) ) | 
						
							| 117 | 116 | eqcomd |  |-  ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> ( 2nd ` s ) = ( 2nd ` u ) ) | 
						
							| 118 | 115 117 | eleq12d |  |-  ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> ( ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) <-> ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) ) ) | 
						
							| 119 | 118 | ralbidv |  |-  ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> ( A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) <-> A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) ) ) | 
						
							| 120 | 119 | rabbidv |  |-  ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) | 
						
							| 121 |  | eqeq12 |  |-  ( ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> ( y = z <-> { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) | 
						
							| 122 | 120 121 | syl5ibrcom |  |-  ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> ( ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> y = z ) ) | 
						
							| 123 | 122 | exp4b |  |-  ( ( 2nd ` u ) = ( 2nd ` s ) -> ( i = j -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) | 
						
							| 124 | 107 123 | syl |  |-  ( ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` u ) /\ ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) ) -> ( i = j -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) | 
						
							| 125 | 124 | ex |  |-  ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` u ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( i = j -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) | 
						
							| 126 | 106 125 | biimtrdi |  |-  ( ( 1st ` u ) = ( 1st ` s ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` u ) ) = ( 2nd ` u ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( i = j -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) ) | 
						
							| 127 | 126 | com24 |  |-  ( ( 1st ` u ) = ( 1st ` s ) -> ( i = j -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` u ) ) = ( 2nd ` u ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) ) | 
						
							| 128 | 127 | impcom |  |-  ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` u ) ) = ( 2nd ` u ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) | 
						
							| 129 | 128 | com13 |  |-  ( ( ( ( M Sat E ) ` N ) ` ( 1st ` u ) ) = ( 2nd ` u ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) | 
						
							| 130 | 105 129 | syl6 |  |-  ( Fun ( ( M Sat E ) ` N ) -> ( u e. ( ( M Sat E ) ` N ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) ) | 
						
							| 131 | 130 | com23 |  |-  ( Fun ( ( M Sat E ) ` N ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( u e. ( ( M Sat E ) ` N ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) ) | 
						
							| 132 | 103 131 | syld |  |-  ( Fun ( ( M Sat E ) ` N ) -> ( s e. ( ( M Sat E ) ` N ) -> ( u e. ( ( M Sat E ) ` N ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) ) | 
						
							| 133 | 132 | imp |  |-  ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) -> ( u e. ( ( M Sat E ) ` N ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) | 
						
							| 134 | 133 | adantr |  |-  ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) -> ( u e. ( ( M Sat E ) ` N ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) | 
						
							| 135 | 134 | imp |  |-  ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) | 
						
							| 136 | 135 | adantld |  |-  ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( ( 2o = 2o /\ ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) | 
						
							| 137 | 136 | ad2antrr |  |-  ( ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) /\ i e. _om ) /\ x = A.g i ( 1st ` u ) ) -> ( ( 2o = 2o /\ ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) | 
						
							| 138 | 101 137 | sylbid |  |-  ( ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) /\ i e. _om ) /\ x = A.g i ( 1st ` u ) ) -> ( x = A.g j ( 1st ` s ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) | 
						
							| 139 | 138 | impd |  |-  ( ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) /\ i e. _om ) /\ x = A.g i ( 1st ` u ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) | 
						
							| 140 | 139 | ex |  |-  ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) /\ i e. _om ) -> ( x = A.g i ( 1st ` u ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) | 
						
							| 141 | 140 | com34 |  |-  ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) /\ i e. _om ) -> ( x = A.g i ( 1st ` u ) -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) ) ) | 
						
							| 142 | 141 | impd |  |-  ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) /\ i e. _om ) -> ( ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) ) | 
						
							| 143 | 142 | rexlimdva |  |-  ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) ) | 
						
							| 144 | 92 143 | jaod |  |-  ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) ) | 
						
							| 145 | 144 | rexlimdva |  |-  ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) ) | 
						
							| 146 | 145 | com23 |  |-  ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> y = z ) ) ) | 
						
							| 147 | 146 | rexlimdva |  |-  ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) -> ( E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> y = z ) ) ) | 
						
							| 148 | 70 147 | jaod |  |-  ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) -> ( ( E. r e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) \/ E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> y = z ) ) ) | 
						
							| 149 | 148 | rexlimdva |  |-  ( Fun ( ( M Sat E ) ` N ) -> ( E. s e. ( ( M Sat E ) ` N ) ( E. r e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) \/ E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> y = z ) ) ) | 
						
							| 150 | 31 149 | biimtrid |  |-  ( Fun ( ( M Sat E ) ` N ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> y = z ) ) ) | 
						
							| 151 | 150 | impd |  |-  ( Fun ( ( M Sat E ) ` N ) -> ( ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) /\ E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) -> y = z ) ) | 
						
							| 152 | 151 | alrimivv |  |-  ( Fun ( ( M Sat E ) ` N ) -> A. y A. z ( ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) /\ E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) -> y = z ) ) | 
						
							| 153 |  | eqeq1 |  |-  ( y = z -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) <-> z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) | 
						
							| 154 | 153 | anbi2d |  |-  ( y = z -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) ) | 
						
							| 155 | 154 | rexbidv |  |-  ( y = z -> ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) ) | 
						
							| 156 |  | eqeq1 |  |-  ( y = z -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } <-> z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) | 
						
							| 157 | 156 | anbi2d |  |-  ( y = z -> ( ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) | 
						
							| 158 | 157 | rexbidv |  |-  ( y = z -> ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) | 
						
							| 159 | 155 158 | orbi12d |  |-  ( y = z -> ( ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) | 
						
							| 160 | 159 | rexbidv |  |-  ( y = z -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) | 
						
							| 161 | 160 | mo4 |  |-  ( E* y E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> A. y A. z ( ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) /\ E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) -> y = z ) ) | 
						
							| 162 | 152 161 | sylibr |  |-  ( Fun ( ( M Sat E ) ` N ) -> E* y E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) | 
						
							| 163 | 162 | alrimiv |  |-  ( Fun ( ( M Sat E ) ` N ) -> A. x E* y E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) | 
						
							| 164 |  | funopab |  |-  ( Fun { <. x , y >. | E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } <-> A. x E* y E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) | 
						
							| 165 | 163 164 | sylibr |  |-  ( Fun ( ( M Sat E ) ` N ) -> Fun { <. x , y >. | E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) |