Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( u = s -> ( 1st ` u ) = ( 1st ` s ) ) |
2 |
|
fveq2 |
|- ( v = r -> ( 1st ` v ) = ( 1st ` r ) ) |
3 |
1 2
|
oveqan12d |
|- ( ( u = s /\ v = r ) -> ( ( 1st ` u ) |g ( 1st ` v ) ) = ( ( 1st ` s ) |g ( 1st ` r ) ) ) |
4 |
3
|
eqeq2d |
|- ( ( u = s /\ v = r ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> x = ( ( 1st ` s ) |g ( 1st ` r ) ) ) ) |
5 |
|
fveq2 |
|- ( u = s -> ( 2nd ` u ) = ( 2nd ` s ) ) |
6 |
|
fveq2 |
|- ( v = r -> ( 2nd ` v ) = ( 2nd ` r ) ) |
7 |
5 6
|
ineqan12d |
|- ( ( u = s /\ v = r ) -> ( ( 2nd ` u ) i^i ( 2nd ` v ) ) = ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) |
8 |
7
|
difeq2d |
|- ( ( u = s /\ v = r ) -> ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) |
9 |
8
|
eqeq2d |
|- ( ( u = s /\ v = r ) -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) <-> y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) |
10 |
4 9
|
anbi12d |
|- ( ( u = s /\ v = r ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) ) |
11 |
10
|
cbvrexdva |
|- ( u = s -> ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. r e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) ) |
12 |
|
simpr |
|- ( ( u = s /\ i = j ) -> i = j ) |
13 |
1
|
adantr |
|- ( ( u = s /\ i = j ) -> ( 1st ` u ) = ( 1st ` s ) ) |
14 |
12 13
|
goaleq12d |
|- ( ( u = s /\ i = j ) -> A.g i ( 1st ` u ) = A.g j ( 1st ` s ) ) |
15 |
14
|
eqeq2d |
|- ( ( u = s /\ i = j ) -> ( x = A.g i ( 1st ` u ) <-> x = A.g j ( 1st ` s ) ) ) |
16 |
|
opeq1 |
|- ( i = j -> <. i , k >. = <. j , k >. ) |
17 |
16
|
sneqd |
|- ( i = j -> { <. i , k >. } = { <. j , k >. } ) |
18 |
|
sneq |
|- ( i = j -> { i } = { j } ) |
19 |
18
|
difeq2d |
|- ( i = j -> ( _om \ { i } ) = ( _om \ { j } ) ) |
20 |
19
|
reseq2d |
|- ( i = j -> ( f |` ( _om \ { i } ) ) = ( f |` ( _om \ { j } ) ) ) |
21 |
17 20
|
uneq12d |
|- ( i = j -> ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) = ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) ) |
22 |
21
|
adantl |
|- ( ( u = s /\ i = j ) -> ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) = ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) ) |
23 |
5
|
adantr |
|- ( ( u = s /\ i = j ) -> ( 2nd ` u ) = ( 2nd ` s ) ) |
24 |
22 23
|
eleq12d |
|- ( ( u = s /\ i = j ) -> ( ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) <-> ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) ) ) |
25 |
24
|
ralbidv |
|- ( ( u = s /\ i = j ) -> ( A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) <-> A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) ) ) |
26 |
25
|
rabbidv |
|- ( ( u = s /\ i = j ) -> { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) |
27 |
26
|
eqeq2d |
|- ( ( u = s /\ i = j ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } <-> y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) |
28 |
15 27
|
anbi12d |
|- ( ( u = s /\ i = j ) -> ( ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) ) |
29 |
28
|
cbvrexdva |
|- ( u = s -> ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) ) |
30 |
11 29
|
orbi12d |
|- ( u = s -> ( ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. r e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) \/ E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) ) ) |
31 |
30
|
cbvrexvw |
|- ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. s e. ( ( M Sat E ) ` N ) ( E. r e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) \/ E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) ) |
32 |
|
simp-4l |
|- ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) /\ v e. ( ( M Sat E ) ` N ) ) -> Fun ( ( M Sat E ) ` N ) ) |
33 |
|
simpr |
|- ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) -> u e. ( ( M Sat E ) ` N ) ) |
34 |
33
|
anim1i |
|- ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) /\ v e. ( ( M Sat E ) ` N ) ) -> ( u e. ( ( M Sat E ) ` N ) /\ v e. ( ( M Sat E ) ` N ) ) ) |
35 |
|
simpr |
|- ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) -> s e. ( ( M Sat E ) ` N ) ) |
36 |
35
|
anim1i |
|- ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) -> ( s e. ( ( M Sat E ) ` N ) /\ r e. ( ( M Sat E ) ` N ) ) ) |
37 |
36
|
ad2antrr |
|- ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) /\ v e. ( ( M Sat E ) ` N ) ) -> ( s e. ( ( M Sat E ) ` N ) /\ r e. ( ( M Sat E ) ` N ) ) ) |
38 |
|
satffunlem |
|- ( ( ( Fun ( ( M Sat E ) ` N ) /\ ( u e. ( ( M Sat E ) ` N ) /\ v e. ( ( M Sat E ) ` N ) ) /\ ( s e. ( ( M Sat E ) ` N ) /\ r e. ( ( M Sat E ) ` N ) ) ) /\ ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) /\ ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) -> z = y ) |
39 |
38
|
eqcomd |
|- ( ( ( Fun ( ( M Sat E ) ` N ) /\ ( u e. ( ( M Sat E ) ` N ) /\ v e. ( ( M Sat E ) ` N ) ) /\ ( s e. ( ( M Sat E ) ` N ) /\ r e. ( ( M Sat E ) ` N ) ) ) /\ ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) /\ ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) -> y = z ) |
40 |
39
|
3exp |
|- ( ( Fun ( ( M Sat E ) ` N ) /\ ( u e. ( ( M Sat E ) ` N ) /\ v e. ( ( M Sat E ) ` N ) ) /\ ( s e. ( ( M Sat E ) ` N ) /\ r e. ( ( M Sat E ) ` N ) ) ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) ) |
41 |
32 34 37 40
|
syl3anc |
|- ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) /\ v e. ( ( M Sat E ) ` N ) ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) ) |
42 |
41
|
rexlimdva |
|- ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) ) |
43 |
|
eqeq1 |
|- ( x = A.g i ( 1st ` u ) -> ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) <-> A.g i ( 1st ` u ) = ( ( 1st ` s ) |g ( 1st ` r ) ) ) ) |
44 |
|
df-goal |
|- A.g i ( 1st ` u ) = <. 2o , <. i , ( 1st ` u ) >. >. |
45 |
|
fvex |
|- ( 1st ` s ) e. _V |
46 |
|
fvex |
|- ( 1st ` r ) e. _V |
47 |
|
gonafv |
|- ( ( ( 1st ` s ) e. _V /\ ( 1st ` r ) e. _V ) -> ( ( 1st ` s ) |g ( 1st ` r ) ) = <. 1o , <. ( 1st ` s ) , ( 1st ` r ) >. >. ) |
48 |
45 46 47
|
mp2an |
|- ( ( 1st ` s ) |g ( 1st ` r ) ) = <. 1o , <. ( 1st ` s ) , ( 1st ` r ) >. >. |
49 |
44 48
|
eqeq12i |
|- ( A.g i ( 1st ` u ) = ( ( 1st ` s ) |g ( 1st ` r ) ) <-> <. 2o , <. i , ( 1st ` u ) >. >. = <. 1o , <. ( 1st ` s ) , ( 1st ` r ) >. >. ) |
50 |
|
2oex |
|- 2o e. _V |
51 |
|
opex |
|- <. i , ( 1st ` u ) >. e. _V |
52 |
50 51
|
opth |
|- ( <. 2o , <. i , ( 1st ` u ) >. >. = <. 1o , <. ( 1st ` s ) , ( 1st ` r ) >. >. <-> ( 2o = 1o /\ <. i , ( 1st ` u ) >. = <. ( 1st ` s ) , ( 1st ` r ) >. ) ) |
53 |
|
1one2o |
|- 1o =/= 2o |
54 |
|
df-ne |
|- ( 1o =/= 2o <-> -. 1o = 2o ) |
55 |
|
pm2.21 |
|- ( -. 1o = 2o -> ( 1o = 2o -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) -> y = z ) ) ) |
56 |
54 55
|
sylbi |
|- ( 1o =/= 2o -> ( 1o = 2o -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) -> y = z ) ) ) |
57 |
53 56
|
ax-mp |
|- ( 1o = 2o -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) -> y = z ) ) |
58 |
57
|
eqcoms |
|- ( 2o = 1o -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) -> y = z ) ) |
59 |
58
|
adantr |
|- ( ( 2o = 1o /\ <. i , ( 1st ` u ) >. = <. ( 1st ` s ) , ( 1st ` r ) >. ) -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) -> y = z ) ) |
60 |
52 59
|
sylbi |
|- ( <. 2o , <. i , ( 1st ` u ) >. >. = <. 1o , <. ( 1st ` s ) , ( 1st ` r ) >. >. -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) -> y = z ) ) |
61 |
49 60
|
sylbi |
|- ( A.g i ( 1st ` u ) = ( ( 1st ` s ) |g ( 1st ` r ) ) -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) -> y = z ) ) |
62 |
43 61
|
syl6bi |
|- ( x = A.g i ( 1st ` u ) -> ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) -> y = z ) ) ) |
63 |
62
|
impd |
|- ( x = A.g i ( 1st ` u ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) |
64 |
63
|
adantr |
|- ( ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) |
65 |
64
|
a1i |
|- ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) /\ i e. _om ) -> ( ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) ) |
66 |
65
|
rexlimdva |
|- ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) ) |
67 |
42 66
|
jaod |
|- ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) ) |
68 |
67
|
rexlimdva |
|- ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) ) |
69 |
68
|
com23 |
|- ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> y = z ) ) ) |
70 |
69
|
rexlimdva |
|- ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) -> ( E. r e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> y = z ) ) ) |
71 |
|
eqeq1 |
|- ( x = A.g j ( 1st ` s ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> A.g j ( 1st ` s ) = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
72 |
|
df-goal |
|- A.g j ( 1st ` s ) = <. 2o , <. j , ( 1st ` s ) >. >. |
73 |
|
fvex |
|- ( 1st ` u ) e. _V |
74 |
|
fvex |
|- ( 1st ` v ) e. _V |
75 |
|
gonafv |
|- ( ( ( 1st ` u ) e. _V /\ ( 1st ` v ) e. _V ) -> ( ( 1st ` u ) |g ( 1st ` v ) ) = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. ) |
76 |
73 74 75
|
mp2an |
|- ( ( 1st ` u ) |g ( 1st ` v ) ) = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. |
77 |
72 76
|
eqeq12i |
|- ( A.g j ( 1st ` s ) = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> <. 2o , <. j , ( 1st ` s ) >. >. = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. ) |
78 |
|
opex |
|- <. j , ( 1st ` s ) >. e. _V |
79 |
50 78
|
opth |
|- ( <. 2o , <. j , ( 1st ` s ) >. >. = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. <-> ( 2o = 1o /\ <. j , ( 1st ` s ) >. = <. ( 1st ` u ) , ( 1st ` v ) >. ) ) |
80 |
|
pm2.21 |
|- ( -. 1o = 2o -> ( 1o = 2o -> y = z ) ) |
81 |
54 80
|
sylbi |
|- ( 1o =/= 2o -> ( 1o = 2o -> y = z ) ) |
82 |
53 81
|
ax-mp |
|- ( 1o = 2o -> y = z ) |
83 |
82
|
eqcoms |
|- ( 2o = 1o -> y = z ) |
84 |
83
|
adantr |
|- ( ( 2o = 1o /\ <. j , ( 1st ` s ) >. = <. ( 1st ` u ) , ( 1st ` v ) >. ) -> y = z ) |
85 |
79 84
|
sylbi |
|- ( <. 2o , <. j , ( 1st ` s ) >. >. = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. -> y = z ) |
86 |
77 85
|
sylbi |
|- ( A.g j ( 1st ` s ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> y = z ) |
87 |
71 86
|
syl6bi |
|- ( x = A.g j ( 1st ` s ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> y = z ) ) |
88 |
87
|
adantr |
|- ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> y = z ) ) |
89 |
88
|
com12 |
|- ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) |
90 |
89
|
adantr |
|- ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) |
91 |
90
|
a1i |
|- ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) /\ v e. ( ( M Sat E ) ` N ) ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) ) |
92 |
91
|
rexlimdva |
|- ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) ) |
93 |
|
eqeq1 |
|- ( x = A.g i ( 1st ` u ) -> ( x = A.g j ( 1st ` s ) <-> A.g i ( 1st ` u ) = A.g j ( 1st ` s ) ) ) |
94 |
44 72
|
eqeq12i |
|- ( A.g i ( 1st ` u ) = A.g j ( 1st ` s ) <-> <. 2o , <. i , ( 1st ` u ) >. >. = <. 2o , <. j , ( 1st ` s ) >. >. ) |
95 |
50 51
|
opth |
|- ( <. 2o , <. i , ( 1st ` u ) >. >. = <. 2o , <. j , ( 1st ` s ) >. >. <-> ( 2o = 2o /\ <. i , ( 1st ` u ) >. = <. j , ( 1st ` s ) >. ) ) |
96 |
|
vex |
|- i e. _V |
97 |
96 73
|
opth |
|- ( <. i , ( 1st ` u ) >. = <. j , ( 1st ` s ) >. <-> ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) |
98 |
97
|
anbi2i |
|- ( ( 2o = 2o /\ <. i , ( 1st ` u ) >. = <. j , ( 1st ` s ) >. ) <-> ( 2o = 2o /\ ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) ) |
99 |
94 95 98
|
3bitri |
|- ( A.g i ( 1st ` u ) = A.g j ( 1st ` s ) <-> ( 2o = 2o /\ ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) ) |
100 |
93 99
|
bitrdi |
|- ( x = A.g i ( 1st ` u ) -> ( x = A.g j ( 1st ` s ) <-> ( 2o = 2o /\ ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) ) ) |
101 |
100
|
adantl |
|- ( ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) /\ i e. _om ) /\ x = A.g i ( 1st ` u ) ) -> ( x = A.g j ( 1st ` s ) <-> ( 2o = 2o /\ ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) ) ) |
102 |
|
funfv1st2nd |
|- ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) -> ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) ) |
103 |
102
|
ex |
|- ( Fun ( ( M Sat E ) ` N ) -> ( s e. ( ( M Sat E ) ` N ) -> ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) ) ) |
104 |
|
funfv1st2nd |
|- ( ( Fun ( ( M Sat E ) ` N ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( ( ( M Sat E ) ` N ) ` ( 1st ` u ) ) = ( 2nd ` u ) ) |
105 |
104
|
ex |
|- ( Fun ( ( M Sat E ) ` N ) -> ( u e. ( ( M Sat E ) ` N ) -> ( ( ( M Sat E ) ` N ) ` ( 1st ` u ) ) = ( 2nd ` u ) ) ) |
106 |
|
fveqeq2 |
|- ( ( 1st ` u ) = ( 1st ` s ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` u ) ) = ( 2nd ` u ) <-> ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` u ) ) ) |
107 |
|
eqtr2 |
|- ( ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` u ) /\ ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) ) -> ( 2nd ` u ) = ( 2nd ` s ) ) |
108 |
|
opeq1 |
|- ( j = i -> <. j , k >. = <. i , k >. ) |
109 |
108
|
sneqd |
|- ( j = i -> { <. j , k >. } = { <. i , k >. } ) |
110 |
|
sneq |
|- ( j = i -> { j } = { i } ) |
111 |
110
|
difeq2d |
|- ( j = i -> ( _om \ { j } ) = ( _om \ { i } ) ) |
112 |
111
|
reseq2d |
|- ( j = i -> ( f |` ( _om \ { j } ) ) = ( f |` ( _om \ { i } ) ) ) |
113 |
109 112
|
uneq12d |
|- ( j = i -> ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) = ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) ) |
114 |
113
|
eqcoms |
|- ( i = j -> ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) = ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) ) |
115 |
114
|
adantl |
|- ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) = ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) ) |
116 |
|
simpl |
|- ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> ( 2nd ` u ) = ( 2nd ` s ) ) |
117 |
116
|
eqcomd |
|- ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> ( 2nd ` s ) = ( 2nd ` u ) ) |
118 |
115 117
|
eleq12d |
|- ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> ( ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) <-> ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) ) ) |
119 |
118
|
ralbidv |
|- ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> ( A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) <-> A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) ) ) |
120 |
119
|
rabbidv |
|- ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) |
121 |
|
eqeq12 |
|- ( ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> ( y = z <-> { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
122 |
120 121
|
syl5ibrcom |
|- ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> ( ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> y = z ) ) |
123 |
122
|
exp4b |
|- ( ( 2nd ` u ) = ( 2nd ` s ) -> ( i = j -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) |
124 |
107 123
|
syl |
|- ( ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` u ) /\ ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) ) -> ( i = j -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) |
125 |
124
|
ex |
|- ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` u ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( i = j -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) |
126 |
106 125
|
syl6bi |
|- ( ( 1st ` u ) = ( 1st ` s ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` u ) ) = ( 2nd ` u ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( i = j -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) ) |
127 |
126
|
com24 |
|- ( ( 1st ` u ) = ( 1st ` s ) -> ( i = j -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` u ) ) = ( 2nd ` u ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) ) |
128 |
127
|
impcom |
|- ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` u ) ) = ( 2nd ` u ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) |
129 |
128
|
com13 |
|- ( ( ( ( M Sat E ) ` N ) ` ( 1st ` u ) ) = ( 2nd ` u ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) |
130 |
105 129
|
syl6 |
|- ( Fun ( ( M Sat E ) ` N ) -> ( u e. ( ( M Sat E ) ` N ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) ) |
131 |
130
|
com23 |
|- ( Fun ( ( M Sat E ) ` N ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( u e. ( ( M Sat E ) ` N ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) ) |
132 |
103 131
|
syld |
|- ( Fun ( ( M Sat E ) ` N ) -> ( s e. ( ( M Sat E ) ` N ) -> ( u e. ( ( M Sat E ) ` N ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) ) |
133 |
132
|
imp |
|- ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) -> ( u e. ( ( M Sat E ) ` N ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) |
134 |
133
|
adantr |
|- ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) -> ( u e. ( ( M Sat E ) ` N ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) |
135 |
134
|
imp |
|- ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) |
136 |
135
|
adantld |
|- ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( ( 2o = 2o /\ ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) |
137 |
136
|
ad2antrr |
|- ( ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) /\ i e. _om ) /\ x = A.g i ( 1st ` u ) ) -> ( ( 2o = 2o /\ ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) |
138 |
101 137
|
sylbid |
|- ( ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) /\ i e. _om ) /\ x = A.g i ( 1st ` u ) ) -> ( x = A.g j ( 1st ` s ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) |
139 |
138
|
impd |
|- ( ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) /\ i e. _om ) /\ x = A.g i ( 1st ` u ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) |
140 |
139
|
ex |
|- ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) /\ i e. _om ) -> ( x = A.g i ( 1st ` u ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) |
141 |
140
|
com34 |
|- ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) /\ i e. _om ) -> ( x = A.g i ( 1st ` u ) -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) ) ) |
142 |
141
|
impd |
|- ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) /\ i e. _om ) -> ( ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) ) |
143 |
142
|
rexlimdva |
|- ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) ) |
144 |
92 143
|
jaod |
|- ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) ) |
145 |
144
|
rexlimdva |
|- ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) ) |
146 |
145
|
com23 |
|- ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> y = z ) ) ) |
147 |
146
|
rexlimdva |
|- ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) -> ( E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> y = z ) ) ) |
148 |
70 147
|
jaod |
|- ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) -> ( ( E. r e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) \/ E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> y = z ) ) ) |
149 |
148
|
rexlimdva |
|- ( Fun ( ( M Sat E ) ` N ) -> ( E. s e. ( ( M Sat E ) ` N ) ( E. r e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) \/ E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> y = z ) ) ) |
150 |
31 149
|
syl5bi |
|- ( Fun ( ( M Sat E ) ` N ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> y = z ) ) ) |
151 |
150
|
impd |
|- ( Fun ( ( M Sat E ) ` N ) -> ( ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) /\ E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) -> y = z ) ) |
152 |
151
|
alrimivv |
|- ( Fun ( ( M Sat E ) ` N ) -> A. y A. z ( ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) /\ E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) -> y = z ) ) |
153 |
|
eqeq1 |
|- ( y = z -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) <-> z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
154 |
153
|
anbi2d |
|- ( y = z -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) ) |
155 |
154
|
rexbidv |
|- ( y = z -> ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) ) |
156 |
|
eqeq1 |
|- ( y = z -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } <-> z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
157 |
156
|
anbi2d |
|- ( y = z -> ( ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
158 |
157
|
rexbidv |
|- ( y = z -> ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
159 |
155 158
|
orbi12d |
|- ( y = z -> ( ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) |
160 |
159
|
rexbidv |
|- ( y = z -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) |
161 |
160
|
mo4 |
|- ( E* y E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> A. y A. z ( ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) /\ E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) -> y = z ) ) |
162 |
152 161
|
sylibr |
|- ( Fun ( ( M Sat E ) ` N ) -> E* y E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
163 |
162
|
alrimiv |
|- ( Fun ( ( M Sat E ) ` N ) -> A. x E* y E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
164 |
|
funopab |
|- ( Fun { <. x , y >. | E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } <-> A. x E* y E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
165 |
163 164
|
sylibr |
|- ( Fun ( ( M Sat E ) ` N ) -> Fun { <. x , y >. | E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) |