Metamath Proof Explorer


Theorem sb9

Description: Commutation of quantification and substitution variables. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 5-Aug-1993) Allow a shortening of sb9i . (Revised by Wolf Lammen, 15-Jun-2019) (New usage is discouraged.)

Ref Expression
Assertion sb9 xxyφyyxφ

Proof

Step Hyp Ref Expression
1 sbequ12a y=xxyφyxφ
2 1 equcoms x=yxyφyxφ
3 2 sps xx=yxyφyxφ
4 3 dral1 xx=yxxyφyyxφ
5 nfnae x¬xx=y
6 nfnae y¬xx=y
7 nfsb2 ¬yy=xyxyφ
8 7 naecoms ¬xx=yyxyφ
9 nfsb2 ¬xx=yxyxφ
10 2 a1i ¬xx=yx=yxyφyxφ
11 5 6 8 9 10 cbv2 ¬xx=yxxyφyyxφ
12 4 11 pm2.61i xxyφyyxφ