Metamath Proof Explorer


Theorem sbco2d

Description: A composition law for substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Jun-1993) (Revised by Mario Carneiro, 6-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses sbco2d.1 xφ
sbco2d.2 zφ
sbco2d.3 φzψ
Assertion sbco2d φyzzxψyxψ

Proof

Step Hyp Ref Expression
1 sbco2d.1 xφ
2 sbco2d.2 zφ
3 sbco2d.3 φzψ
4 2 3 nfim1 zφψ
5 4 sbco2 yzzxφψyxφψ
6 1 sbrim zxφψφzxψ
7 6 sbbii yzzxφψyzφzxψ
8 2 sbrim yzφzxψφyzzxψ
9 7 8 bitri yzzxφψφyzzxψ
10 1 sbrim yxφψφyxψ
11 5 9 10 3bitr3i φyzzxψφyxψ
12 11 pm5.74ri φyzzxψyxψ