Metamath Proof Explorer


Theorem sbcopeq1a

Description: Equality theorem for substitution of a class for an ordered pair (analogue of sbceq1a that avoids the existential quantifiers of copsexg ). (Contributed by NM, 19-Aug-2006) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion sbcopeq1a A=xy[˙1stA/x]˙[˙2ndA/y]˙φφ

Proof

Step Hyp Ref Expression
1 vex xV
2 vex yV
3 1 2 op2ndd A=xy2ndA=y
4 3 eqcomd A=xyy=2ndA
5 sbceq1a y=2ndAφ[˙2ndA/y]˙φ
6 4 5 syl A=xyφ[˙2ndA/y]˙φ
7 1 2 op1std A=xy1stA=x
8 7 eqcomd A=xyx=1stA
9 sbceq1a x=1stA[˙2ndA/y]˙φ[˙1stA/x]˙[˙2ndA/y]˙φ
10 8 9 syl A=xy[˙2ndA/y]˙φ[˙1stA/x]˙[˙2ndA/y]˙φ
11 6 10 bitr2d A=xy[˙1stA/x]˙[˙2ndA/y]˙φφ