Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
|
2 |
|
vex |
|
3 |
1 2
|
eqvinop |
|
4 |
|
19.8a |
|
5 |
4
|
19.23bi |
|
6 |
5
|
ex |
|
7 |
|
vex |
|
8 |
|
vex |
|
9 |
7 8
|
opth |
|
10 |
9
|
anbi1i |
|
11 |
10
|
2exbii |
|
12 |
|
nfe1 |
|
13 |
|
19.8a |
|
14 |
13
|
anim2i |
|
15 |
14
|
anassrs |
|
16 |
15
|
eximi |
|
17 |
|
biidd |
|
18 |
17
|
drex1 |
|
19 |
16 18
|
syl5ib |
|
20 |
|
anass |
|
21 |
20
|
exbii |
|
22 |
|
19.40 |
|
23 |
|
nfeqf2 |
|
24 |
23
|
19.9d |
|
25 |
24
|
anim1d |
|
26 |
22 25
|
syl5 |
|
27 |
21 26
|
syl5bi |
|
28 |
|
19.8a |
|
29 |
27 28
|
syl6 |
|
30 |
19 29
|
pm2.61i |
|
31 |
12 30
|
exlimi |
|
32 |
|
euequ |
|
33 |
|
equcom |
|
34 |
33
|
eubii |
|
35 |
32 34
|
mpbi |
|
36 |
|
eupick |
|
37 |
35 36
|
mpan |
|
38 |
37
|
com12 |
|
39 |
|
euequ |
|
40 |
|
equcom |
|
41 |
40
|
eubii |
|
42 |
39 41
|
mpbi |
|
43 |
|
eupick |
|
44 |
42 43
|
mpan |
|
45 |
44
|
com12 |
|
46 |
38 45
|
sylan9 |
|
47 |
31 46
|
syl5 |
|
48 |
11 47
|
syl5bi |
|
49 |
9 48
|
sylbi |
|
50 |
6 49
|
impbid |
|
51 |
|
eqeq1 |
|
52 |
51
|
anbi1d |
|
53 |
52
|
2exbidv |
|
54 |
53
|
bibi2d |
|
55 |
51 54
|
imbi12d |
|
56 |
50 55
|
mpbiri |
|
57 |
56
|
adantr |
|
58 |
57
|
exlimivv |
|
59 |
3 58
|
sylbi |
|
60 |
59
|
pm2.43i |
|