Metamath Proof Explorer


Theorem sbeqal1

Description: If x = y always implies x = z , then y = z . (Contributed by Andrew Salmon, 2-Jun-2011)

Ref Expression
Assertion sbeqal1 xx=yx=zy=z

Proof

Step Hyp Ref Expression
1 sb2 xx=yx=zyxx=z
2 equsb3 yxx=zy=z
3 1 2 sylib xx=yx=zy=z