Metamath Proof Explorer


Theorem sbthlem10

Description: Lemma for sbth . (Contributed by NM, 28-Mar-1998)

Ref Expression
Hypotheses sbthlem.1 AV
sbthlem.2 D=x|xAgBfxAx
sbthlem.3 H=fDg-1AD
sbthlem.4 BV
Assertion sbthlem10 ABBAAB

Proof

Step Hyp Ref Expression
1 sbthlem.1 AV
2 sbthlem.2 D=x|xAgBfxAx
3 sbthlem.3 H=fDg-1AD
4 sbthlem.4 BV
5 4 brdom ABff:A1-1B
6 1 brdom BAgg:B1-1A
7 5 6 anbi12i ABBAff:A1-1Bgg:B1-1A
8 exdistrv fgf:A1-1Bg:B1-1Aff:A1-1Bgg:B1-1A
9 7 8 bitr4i ABBAfgf:A1-1Bg:B1-1A
10 vex fV
11 10 resex fDV
12 vex gV
13 12 cnvex g-1V
14 13 resex g-1ADV
15 11 14 unex fDg-1ADV
16 3 15 eqeltri HV
17 1 2 3 sbthlem9 f:A1-1Bg:B1-1AH:A1-1 ontoB
18 f1oen3g HVH:A1-1 ontoBAB
19 16 17 18 sylancr f:A1-1Bg:B1-1AAB
20 19 exlimivv fgf:A1-1Bg:B1-1AAB
21 9 20 sylbi ABBAAB