| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sbthlem.1 | 
							⊢ 𝐴  ∈  V  | 
						
						
							| 2 | 
							
								
							 | 
							sbthlem.2 | 
							⊢ 𝐷  =  { 𝑥  ∣  ( 𝑥  ⊆  𝐴  ∧  ( 𝑔  “  ( 𝐵  ∖  ( 𝑓  “  𝑥 ) ) )  ⊆  ( 𝐴  ∖  𝑥 ) ) }  | 
						
						
							| 3 | 
							
								
							 | 
							sbthlem.3 | 
							⊢ 𝐻  =  ( ( 𝑓  ↾  ∪  𝐷 )  ∪  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							sbthlem.4 | 
							⊢ 𝐵  ∈  V  | 
						
						
							| 5 | 
							
								4
							 | 
							brdom | 
							⊢ ( 𝐴  ≼  𝐵  ↔  ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 )  | 
						
						
							| 6 | 
							
								1
							 | 
							brdom | 
							⊢ ( 𝐵  ≼  𝐴  ↔  ∃ 𝑔 𝑔 : 𝐵 –1-1→ 𝐴 )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							anbi12i | 
							⊢ ( ( 𝐴  ≼  𝐵  ∧  𝐵  ≼  𝐴 )  ↔  ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵  ∧  ∃ 𝑔 𝑔 : 𝐵 –1-1→ 𝐴 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							exdistrv | 
							⊢ ( ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝐴 –1-1→ 𝐵  ∧  𝑔 : 𝐵 –1-1→ 𝐴 )  ↔  ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵  ∧  ∃ 𝑔 𝑔 : 𝐵 –1-1→ 𝐴 ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							bitr4i | 
							⊢ ( ( 𝐴  ≼  𝐵  ∧  𝐵  ≼  𝐴 )  ↔  ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝐴 –1-1→ 𝐵  ∧  𝑔 : 𝐵 –1-1→ 𝐴 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							vex | 
							⊢ 𝑓  ∈  V  | 
						
						
							| 11 | 
							
								10
							 | 
							resex | 
							⊢ ( 𝑓  ↾  ∪  𝐷 )  ∈  V  | 
						
						
							| 12 | 
							
								
							 | 
							vex | 
							⊢ 𝑔  ∈  V  | 
						
						
							| 13 | 
							
								12
							 | 
							cnvex | 
							⊢ ◡ 𝑔  ∈  V  | 
						
						
							| 14 | 
							
								13
							 | 
							resex | 
							⊢ ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) )  ∈  V  | 
						
						
							| 15 | 
							
								11 14
							 | 
							unex | 
							⊢ ( ( 𝑓  ↾  ∪  𝐷 )  ∪  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) )  ∈  V  | 
						
						
							| 16 | 
							
								3 15
							 | 
							eqeltri | 
							⊢ 𝐻  ∈  V  | 
						
						
							| 17 | 
							
								1 2 3
							 | 
							sbthlem9 | 
							⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵  ∧  𝑔 : 𝐵 –1-1→ 𝐴 )  →  𝐻 : 𝐴 –1-1-onto→ 𝐵 )  | 
						
						
							| 18 | 
							
								
							 | 
							f1oen3g | 
							⊢ ( ( 𝐻  ∈  V  ∧  𝐻 : 𝐴 –1-1-onto→ 𝐵 )  →  𝐴  ≈  𝐵 )  | 
						
						
							| 19 | 
							
								16 17 18
							 | 
							sylancr | 
							⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵  ∧  𝑔 : 𝐵 –1-1→ 𝐴 )  →  𝐴  ≈  𝐵 )  | 
						
						
							| 20 | 
							
								19
							 | 
							exlimivv | 
							⊢ ( ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝐴 –1-1→ 𝐵  ∧  𝑔 : 𝐵 –1-1→ 𝐴 )  →  𝐴  ≈  𝐵 )  | 
						
						
							| 21 | 
							
								9 20
							 | 
							sylbi | 
							⊢ ( ( 𝐴  ≼  𝐵  ∧  𝐵  ≼  𝐴 )  →  𝐴  ≈  𝐵 )  |