Metamath Proof Explorer


Theorem sbthlem3

Description: Lemma for sbth . (Contributed by NM, 22-Mar-1998)

Ref Expression
Hypotheses sbthlem.1 AV
sbthlem.2 D=x|xAgBfxAx
Assertion sbthlem3 rangAgBfD=AD

Proof

Step Hyp Ref Expression
1 sbthlem.1 AV
2 sbthlem.2 D=x|xAgBfxAx
3 1 2 sbthlem2 rangAAgBfDD
4 1 2 sbthlem1 DAgBfD
5 3 4 jctil rangADAgBfDAgBfDD
6 eqss D=AgBfDDAgBfDAgBfDD
7 5 6 sylibr rangAD=AgBfD
8 7 difeq2d rangAAD=AAgBfD
9 imassrn gBfDrang
10 sstr2 gBfDrangrangAgBfDA
11 9 10 ax-mp rangAgBfDA
12 dfss4 gBfDAAAgBfD=gBfD
13 11 12 sylib rangAAAgBfD=gBfD
14 8 13 eqtr2d rangAgBfD=AD