Metamath Proof Explorer


Theorem sbthlem1

Description: Lemma for sbth . (Contributed by NM, 22-Mar-1998)

Ref Expression
Hypotheses sbthlem.1 AV
sbthlem.2 D=x|xAgBfxAx
Assertion sbthlem1 DAgBfD

Proof

Step Hyp Ref Expression
1 sbthlem.1 AV
2 sbthlem.2 D=x|xAgBfxAx
3 unissb DAgBfDxDxAgBfD
4 2 eqabri xDxAgBfxAx
5 difss2 gBfxAxgBfxA
6 ssconb xAgBfxAxAgBfxgBfxAx
7 6 exbiri xAgBfxAgBfxAxxAgBfx
8 5 7 syl5 xAgBfxAxgBfxAxxAgBfx
9 8 pm2.43d xAgBfxAxxAgBfx
10 9 imp xAgBfxAxxAgBfx
11 4 10 sylbi xDxAgBfx
12 elssuni xDxD
13 imass2 xDfxfD
14 sscon fxfDBfDBfx
15 12 13 14 3syl xDBfDBfx
16 imass2 BfDBfxgBfDgBfx
17 sscon gBfDgBfxAgBfxAgBfD
18 15 16 17 3syl xDAgBfxAgBfD
19 11 18 sstrd xDxAgBfD
20 3 19 mprgbir DAgBfD