Metamath Proof Explorer


Theorem sbthlem4

Description: Lemma for sbth . (Contributed by NM, 27-Mar-1998)

Ref Expression
Hypotheses sbthlem.1 AV
sbthlem.2 D=x|xAgBfxAx
Assertion sbthlem4 domg=BrangAFung-1g-1AD=BfD

Proof

Step Hyp Ref Expression
1 sbthlem.1 AV
2 sbthlem.2 D=x|xAgBfxAx
3 df-ima g-1AD=rang-1AD
4 difss BfDB
5 sseq2 domg=BBfDdomgBfDB
6 4 5 mpbiri domg=BBfDdomg
7 ssdmres BfDdomgdomgBfD=BfD
8 6 7 sylib domg=BdomgBfD=BfD
9 dfdm4 domgBfD=rangBfD-1
10 8 9 eqtr3di domg=BBfD=rangBfD-1
11 funcnvres Fung-1gBfD-1=g-1gBfD
12 1 2 sbthlem3 rangAgBfD=AD
13 12 reseq2d rangAg-1gBfD=g-1AD
14 11 13 sylan9eqr rangAFung-1gBfD-1=g-1AD
15 14 rneqd rangAFung-1rangBfD-1=rang-1AD
16 10 15 sylan9eq domg=BrangAFung-1BfD=rang-1AD
17 16 anassrs domg=BrangAFung-1BfD=rang-1AD
18 3 17 eqtr4id domg=BrangAFung-1g-1AD=BfD