Metamath Proof Explorer


Theorem scaffval

Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015) (Proof shortened by AV, 2-Mar-2024)

Ref Expression
Hypotheses scaffval.b B=BaseW
scaffval.f F=ScalarW
scaffval.k K=BaseF
scaffval.a ˙=𝑠𝑓W
scaffval.s ·˙=W
Assertion scaffval ˙=xK,yBx·˙y

Proof

Step Hyp Ref Expression
1 scaffval.b B=BaseW
2 scaffval.f F=ScalarW
3 scaffval.k K=BaseF
4 scaffval.a ˙=𝑠𝑓W
5 scaffval.s ·˙=W
6 fveq2 w=WScalarw=ScalarW
7 6 2 eqtr4di w=WScalarw=F
8 7 fveq2d w=WBaseScalarw=BaseF
9 8 3 eqtr4di w=WBaseScalarw=K
10 fveq2 w=WBasew=BaseW
11 10 1 eqtr4di w=WBasew=B
12 fveq2 w=Ww=W
13 12 5 eqtr4di w=Ww=·˙
14 13 oveqd w=Wxwy=x·˙y
15 9 11 14 mpoeq123dv w=WxBaseScalarw,yBasewxwy=xK,yBx·˙y
16 df-scaf 𝑠𝑓=wVxBaseScalarw,yBasewxwy
17 3 fvexi KV
18 1 fvexi BV
19 5 fvexi ·˙V
20 19 rnex ran·˙V
21 p0ex V
22 20 21 unex ran·˙V
23 df-ov x·˙y=·˙xy
24 fvrn0 ·˙xyran·˙
25 23 24 eqeltri x·˙yran·˙
26 25 rgen2w xKyBx·˙yran·˙
27 17 18 22 26 mpoexw xK,yBx·˙yV
28 15 16 27 fvmpt WV𝑠𝑓W=xK,yBx·˙y
29 fvprc ¬WV𝑠𝑓W=
30 fvprc ¬WVBaseW=
31 1 30 eqtrid ¬WVB=
32 31 olcd ¬WVK=B=
33 0mpo0 K=B=xK,yBx·˙y=
34 32 33 syl ¬WVxK,yBx·˙y=
35 29 34 eqtr4d ¬WV𝑠𝑓W=xK,yBx·˙y
36 28 35 pm2.61i 𝑠𝑓W=xK,yBx·˙y
37 4 36 eqtri ˙=xK,yBx·˙y