Metamath Proof Explorer


Theorem scmatric

Description: A ring is isomorphic to every ring of scalar matrices over this ring with positive dimension. (Contributed by AV, 29-Dec-2019)

Ref Expression
Hypotheses scmatric.a A=NMatR
scmatric.c C=NScMatR
scmatric.s S=A𝑠C
Assertion scmatric NFinNRRingR𝑟S

Proof

Step Hyp Ref Expression
1 scmatric.a A=NMatR
2 scmatric.c C=NScMatR
3 scmatric.s S=A𝑠C
4 eqid BaseR=BaseR
5 eqid 1A=1A
6 eqid A=A
7 eqid xBaseRxA1A=xBaseRxA1A
8 4 1 5 6 7 2 3 scmatrngiso NFinNRRingxBaseRxA1ARRingIsoS
9 8 ne0d NFinNRRingRRingIsoS
10 brric R𝑟SRRingIsoS
11 9 10 sylibr NFinNRRingR𝑟S