Metamath Proof Explorer


Theorem sdc

Description: Strong dependent choice. Suppose we may choose an element of A such that property ps holds, and suppose that if we have already chosen the first k elements (represented here by a function from 1 ... k to A ), we may choose another element so that all k + 1 elements taken together have property ps . Then there exists an infinite sequence of elements of A such that the first n terms of this sequence satisfy ps for all n . This theorem allows us to construct infinite seqeunces where each term depends on all the previous terms in the sequence. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 3-Jun-2014)

Ref Expression
Hypotheses sdc.1 Z = M
sdc.2 g = f M n ψ χ
sdc.3 n = M ψ τ
sdc.4 n = k ψ θ
sdc.5 g = h n = k + 1 ψ σ
sdc.6 φ A V
sdc.7 φ M
sdc.8 φ g g : M A τ
sdc.9 φ k Z g : M k A θ h h : M k + 1 A g = h M k σ
Assertion sdc φ f f : Z A n Z χ

Proof

Step Hyp Ref Expression
1 sdc.1 Z = M
2 sdc.2 g = f M n ψ χ
3 sdc.3 n = M ψ τ
4 sdc.4 n = k ψ θ
5 sdc.5 g = h n = k + 1 ψ σ
6 sdc.6 φ A V
7 sdc.7 φ M
8 sdc.8 φ g g : M A τ
9 sdc.9 φ k Z g : M k A θ h h : M k + 1 A g = h M k σ
10 eqid g | n Z g : M n A ψ = g | n Z g : M n A ψ
11 eqid Z = Z
12 oveq2 n = k M n = M k
13 12 feq2d n = k g : M n A g : M k A
14 13 4 anbi12d n = k g : M n A ψ g : M k A θ
15 14 cbvrexvw n Z g : M n A ψ k Z g : M k A θ
16 15 abbii g | n Z g : M n A ψ = g | k Z g : M k A θ
17 eqid h | k Z h : M k + 1 A f = h M k σ = h | k Z h : M k + 1 A f = h M k σ
18 11 16 17 mpoeq123i j Z , f g | n Z g : M n A ψ h | k Z h : M k + 1 A f = h M k σ = j Z , f g | k Z g : M k A θ h | k Z h : M k + 1 A f = h M k σ
19 eqidd j = y h | k Z h : M k + 1 A f = h M k σ = h | k Z h : M k + 1 A f = h M k σ
20 eqeq1 f = x f = h M k x = h M k
21 20 3anbi2d f = x h : M k + 1 A f = h M k σ h : M k + 1 A x = h M k σ
22 21 rexbidv f = x k Z h : M k + 1 A f = h M k σ k Z h : M k + 1 A x = h M k σ
23 22 abbidv f = x h | k Z h : M k + 1 A f = h M k σ = h | k Z h : M k + 1 A x = h M k σ
24 19 23 cbvmpov j Z , f g | n Z g : M n A ψ h | k Z h : M k + 1 A f = h M k σ = y Z , x g | n Z g : M n A ψ h | k Z h : M k + 1 A x = h M k σ
25 18 24 eqtr3i j Z , f g | k Z g : M k A θ h | k Z h : M k + 1 A f = h M k σ = y Z , x g | n Z g : M n A ψ h | k Z h : M k + 1 A x = h M k σ
26 1 2 3 4 5 6 7 8 9 10 25 sdclem1 φ f f : Z A n Z χ