Step |
Hyp |
Ref |
Expression |
1 |
|
sdc.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
sdc.2 |
⊢ ( 𝑔 = ( 𝑓 ↾ ( 𝑀 ... 𝑛 ) ) → ( 𝜓 ↔ 𝜒 ) ) |
3 |
|
sdc.3 |
⊢ ( 𝑛 = 𝑀 → ( 𝜓 ↔ 𝜏 ) ) |
4 |
|
sdc.4 |
⊢ ( 𝑛 = 𝑘 → ( 𝜓 ↔ 𝜃 ) ) |
5 |
|
sdc.5 |
⊢ ( ( 𝑔 = ℎ ∧ 𝑛 = ( 𝑘 + 1 ) ) → ( 𝜓 ↔ 𝜎 ) ) |
6 |
|
sdc.6 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
7 |
|
sdc.7 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
8 |
|
sdc.8 |
⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : { 𝑀 } ⟶ 𝐴 ∧ 𝜏 ) ) |
9 |
|
sdc.9 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) → ∃ ℎ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑔 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) ) |
10 |
|
eqid |
⊢ { 𝑔 ∣ ∃ 𝑛 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) } = { 𝑔 ∣ ∃ 𝑛 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) } |
11 |
|
eqid |
⊢ 𝑍 = 𝑍 |
12 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑘 ) ) |
13 |
12
|
feq2d |
⊢ ( 𝑛 = 𝑘 → ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ↔ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ) ) |
14 |
13 4
|
anbi12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) ↔ ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) ) ) |
15 |
14
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) ) |
16 |
15
|
abbii |
⊢ { 𝑔 ∣ ∃ 𝑛 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) } = { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } |
17 |
|
eqid |
⊢ { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑓 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } = { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑓 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } |
18 |
11 16 17
|
mpoeq123i |
⊢ ( 𝑗 ∈ 𝑍 , 𝑓 ∈ { 𝑔 ∣ ∃ 𝑛 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) } ↦ { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑓 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) = ( 𝑗 ∈ 𝑍 , 𝑓 ∈ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } ↦ { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑓 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) |
19 |
|
eqidd |
⊢ ( 𝑗 = 𝑦 → { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑓 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } = { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑓 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) |
20 |
|
eqeq1 |
⊢ ( 𝑓 = 𝑥 → ( 𝑓 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ↔ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ) ) |
21 |
20
|
3anbi2d |
⊢ ( 𝑓 = 𝑥 → ( ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑓 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ↔ ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) ) |
22 |
21
|
rexbidv |
⊢ ( 𝑓 = 𝑥 → ( ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑓 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ↔ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) ) ) |
23 |
22
|
abbidv |
⊢ ( 𝑓 = 𝑥 → { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑓 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } = { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) |
24 |
19 23
|
cbvmpov |
⊢ ( 𝑗 ∈ 𝑍 , 𝑓 ∈ { 𝑔 ∣ ∃ 𝑛 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) } ↦ { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑓 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) = ( 𝑦 ∈ 𝑍 , 𝑥 ∈ { 𝑔 ∣ ∃ 𝑛 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) } ↦ { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) |
25 |
18 24
|
eqtr3i |
⊢ ( 𝑗 ∈ 𝑍 , 𝑓 ∈ { 𝑔 ∣ ∃ 𝑘 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐴 ∧ 𝜃 ) } ↦ { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑓 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) = ( 𝑦 ∈ 𝑍 , 𝑥 ∈ { 𝑔 ∣ ∃ 𝑛 ∈ 𝑍 ( 𝑔 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ 𝜓 ) } ↦ { ℎ ∣ ∃ 𝑘 ∈ 𝑍 ( ℎ : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐴 ∧ 𝑥 = ( ℎ ↾ ( 𝑀 ... 𝑘 ) ) ∧ 𝜎 ) } ) |
26 |
1 2 3 4 5 6 7 8 9 10 25
|
sdclem1 |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑍 ⟶ 𝐴 ∧ ∀ 𝑛 ∈ 𝑍 𝜒 ) ) |