| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fdc.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
fdc.2 |
⊢ 𝑀 ∈ ℤ |
| 3 |
|
fdc.3 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 4 |
|
fdc.4 |
⊢ 𝑁 = ( 𝑀 + 1 ) |
| 5 |
|
fdc.5 |
⊢ ( 𝑎 = ( 𝑓 ‘ ( 𝑘 − 1 ) ) → ( 𝜑 ↔ 𝜓 ) ) |
| 6 |
|
fdc.6 |
⊢ ( 𝑏 = ( 𝑓 ‘ 𝑘 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 7 |
|
fdc.7 |
⊢ ( 𝑎 = ( 𝑓 ‘ 𝑛 ) → ( 𝜃 ↔ 𝜏 ) ) |
| 8 |
|
fdc.8 |
⊢ ( 𝜂 → 𝐶 ∈ 𝐴 ) |
| 9 |
|
fdc.9 |
⊢ ( 𝜂 → 𝑅 Fr 𝐴 ) |
| 10 |
|
fdc.10 |
⊢ ( ( 𝜂 ∧ 𝑎 ∈ 𝐴 ) → ( 𝜃 ∨ ∃ 𝑏 ∈ 𝐴 𝜑 ) ) |
| 11 |
|
fdc.11 |
⊢ ( ( ( 𝜂 ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → 𝑏 𝑅 𝑎 ) |
| 12 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 13 |
2 12
|
ax-mp |
⊢ 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) |
| 14 |
13 3
|
eleqtrri |
⊢ 𝑀 ∈ 𝑍 |
| 15 |
|
eqid |
⊢ { 〈 𝑀 , 𝑎 〉 } = { 〈 𝑀 , 𝑎 〉 } |
| 16 |
2
|
elexi |
⊢ 𝑀 ∈ V |
| 17 |
|
vex |
⊢ 𝑎 ∈ V |
| 18 |
16 17
|
fsn |
⊢ ( { 〈 𝑀 , 𝑎 〉 } : { 𝑀 } ⟶ { 𝑎 } ↔ { 〈 𝑀 , 𝑎 〉 } = { 〈 𝑀 , 𝑎 〉 } ) |
| 19 |
15 18
|
mpbir |
⊢ { 〈 𝑀 , 𝑎 〉 } : { 𝑀 } ⟶ { 𝑎 } |
| 20 |
|
snssi |
⊢ ( 𝑎 ∈ 𝐴 → { 𝑎 } ⊆ 𝐴 ) |
| 21 |
|
fss |
⊢ ( ( { 〈 𝑀 , 𝑎 〉 } : { 𝑀 } ⟶ { 𝑎 } ∧ { 𝑎 } ⊆ 𝐴 ) → { 〈 𝑀 , 𝑎 〉 } : { 𝑀 } ⟶ 𝐴 ) |
| 22 |
19 20 21
|
sylancr |
⊢ ( 𝑎 ∈ 𝐴 → { 〈 𝑀 , 𝑎 〉 } : { 𝑀 } ⟶ 𝐴 ) |
| 23 |
|
fzsn |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
| 24 |
2 23
|
ax-mp |
⊢ ( 𝑀 ... 𝑀 ) = { 𝑀 } |
| 25 |
24
|
feq2i |
⊢ ( { 〈 𝑀 , 𝑎 〉 } : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ↔ { 〈 𝑀 , 𝑎 〉 } : { 𝑀 } ⟶ 𝐴 ) |
| 26 |
22 25
|
sylibr |
⊢ ( 𝑎 ∈ 𝐴 → { 〈 𝑀 , 𝑎 〉 } : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝜃 ) → { 〈 𝑀 , 𝑎 〉 } : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ) |
| 28 |
16 17
|
fvsn |
⊢ ( { 〈 𝑀 , 𝑎 〉 } ‘ 𝑀 ) = 𝑎 |
| 29 |
28
|
a1i |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝜃 ) → ( { 〈 𝑀 , 𝑎 〉 } ‘ 𝑀 ) = 𝑎 ) |
| 30 |
|
simpr |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝜃 ) → 𝜃 ) |
| 31 |
|
snex |
⊢ { 〈 𝑀 , 𝑎 〉 } ∈ V |
| 32 |
|
feq1 |
⊢ ( 𝑓 = { 〈 𝑀 , 𝑎 〉 } → ( 𝑓 : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ↔ { 〈 𝑀 , 𝑎 〉 } : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ) ) |
| 33 |
|
fveq1 |
⊢ ( 𝑓 = { 〈 𝑀 , 𝑎 〉 } → ( 𝑓 ‘ 𝑀 ) = ( { 〈 𝑀 , 𝑎 〉 } ‘ 𝑀 ) ) |
| 34 |
33
|
eqeq1d |
⊢ ( 𝑓 = { 〈 𝑀 , 𝑎 〉 } → ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ↔ ( { 〈 𝑀 , 𝑎 〉 } ‘ 𝑀 ) = 𝑎 ) ) |
| 35 |
33 28
|
eqtrdi |
⊢ ( 𝑓 = { 〈 𝑀 , 𝑎 〉 } → ( 𝑓 ‘ 𝑀 ) = 𝑎 ) |
| 36 |
|
sbceq2a |
⊢ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 → ( [ ( 𝑓 ‘ 𝑀 ) / 𝑎 ] 𝜃 ↔ 𝜃 ) ) |
| 37 |
35 36
|
syl |
⊢ ( 𝑓 = { 〈 𝑀 , 𝑎 〉 } → ( [ ( 𝑓 ‘ 𝑀 ) / 𝑎 ] 𝜃 ↔ 𝜃 ) ) |
| 38 |
34 37
|
anbi12d |
⊢ ( 𝑓 = { 〈 𝑀 , 𝑎 〉 } → ( ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ 𝑀 ) / 𝑎 ] 𝜃 ) ↔ ( ( { 〈 𝑀 , 𝑎 〉 } ‘ 𝑀 ) = 𝑎 ∧ 𝜃 ) ) ) |
| 39 |
32 38
|
anbi12d |
⊢ ( 𝑓 = { 〈 𝑀 , 𝑎 〉 } → ( ( 𝑓 : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ 𝑀 ) / 𝑎 ] 𝜃 ) ) ↔ ( { 〈 𝑀 , 𝑎 〉 } : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ∧ ( ( { 〈 𝑀 , 𝑎 〉 } ‘ 𝑀 ) = 𝑎 ∧ 𝜃 ) ) ) ) |
| 40 |
31 39
|
spcev |
⊢ ( ( { 〈 𝑀 , 𝑎 〉 } : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ∧ ( ( { 〈 𝑀 , 𝑎 〉 } ‘ 𝑀 ) = 𝑎 ∧ 𝜃 ) ) → ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ 𝑀 ) / 𝑎 ] 𝜃 ) ) ) |
| 41 |
27 29 30 40
|
syl12anc |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝜃 ) → ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ 𝑀 ) / 𝑎 ] 𝜃 ) ) ) |
| 42 |
|
oveq2 |
⊢ ( 𝑛 = 𝑀 → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑀 ) ) |
| 43 |
42
|
feq2d |
⊢ ( 𝑛 = 𝑀 → ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ↔ 𝑓 : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ) ) |
| 44 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑛 ) ∈ V |
| 45 |
44 7
|
sbcie |
⊢ ( [ ( 𝑓 ‘ 𝑛 ) / 𝑎 ] 𝜃 ↔ 𝜏 ) |
| 46 |
|
fveq2 |
⊢ ( 𝑛 = 𝑀 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑀 ) ) |
| 47 |
46
|
sbceq1d |
⊢ ( 𝑛 = 𝑀 → ( [ ( 𝑓 ‘ 𝑛 ) / 𝑎 ] 𝜃 ↔ [ ( 𝑓 ‘ 𝑀 ) / 𝑎 ] 𝜃 ) ) |
| 48 |
45 47
|
bitr3id |
⊢ ( 𝑛 = 𝑀 → ( 𝜏 ↔ [ ( 𝑓 ‘ 𝑀 ) / 𝑎 ] 𝜃 ) ) |
| 49 |
48
|
anbi2d |
⊢ ( 𝑛 = 𝑀 → ( ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ↔ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ 𝑀 ) / 𝑎 ] 𝜃 ) ) ) |
| 50 |
|
oveq2 |
⊢ ( 𝑛 = 𝑀 → ( 𝑁 ... 𝑛 ) = ( 𝑁 ... 𝑀 ) ) |
| 51 |
4
|
oveq1i |
⊢ ( 𝑁 ... 𝑀 ) = ( ( 𝑀 + 1 ) ... 𝑀 ) |
| 52 |
2
|
zrei |
⊢ 𝑀 ∈ ℝ |
| 53 |
52
|
ltp1i |
⊢ 𝑀 < ( 𝑀 + 1 ) |
| 54 |
|
peano2z |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 + 1 ) ∈ ℤ ) |
| 55 |
2 54
|
ax-mp |
⊢ ( 𝑀 + 1 ) ∈ ℤ |
| 56 |
|
fzn |
⊢ ( ( ( 𝑀 + 1 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < ( 𝑀 + 1 ) ↔ ( ( 𝑀 + 1 ) ... 𝑀 ) = ∅ ) ) |
| 57 |
55 2 56
|
mp2an |
⊢ ( 𝑀 < ( 𝑀 + 1 ) ↔ ( ( 𝑀 + 1 ) ... 𝑀 ) = ∅ ) |
| 58 |
53 57
|
mpbi |
⊢ ( ( 𝑀 + 1 ) ... 𝑀 ) = ∅ |
| 59 |
51 58
|
eqtri |
⊢ ( 𝑁 ... 𝑀 ) = ∅ |
| 60 |
50 59
|
eqtrdi |
⊢ ( 𝑛 = 𝑀 → ( 𝑁 ... 𝑛 ) = ∅ ) |
| 61 |
60
|
raleqdv |
⊢ ( 𝑛 = 𝑀 → ( ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ↔ ∀ 𝑘 ∈ ∅ 𝜒 ) ) |
| 62 |
43 49 61
|
3anbi123d |
⊢ ( 𝑛 = 𝑀 → ( ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ↔ ( 𝑓 : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ 𝑀 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ∅ 𝜒 ) ) ) |
| 63 |
|
ral0 |
⊢ ∀ 𝑘 ∈ ∅ 𝜒 |
| 64 |
|
df-3an |
⊢ ( ( 𝑓 : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ 𝑀 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ∅ 𝜒 ) ↔ ( ( 𝑓 : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ 𝑀 ) / 𝑎 ] 𝜃 ) ) ∧ ∀ 𝑘 ∈ ∅ 𝜒 ) ) |
| 65 |
63 64
|
mpbiran2 |
⊢ ( ( 𝑓 : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ 𝑀 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ∅ 𝜒 ) ↔ ( 𝑓 : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ 𝑀 ) / 𝑎 ] 𝜃 ) ) ) |
| 66 |
62 65
|
bitrdi |
⊢ ( 𝑛 = 𝑀 → ( ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ↔ ( 𝑓 : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ 𝑀 ) / 𝑎 ] 𝜃 ) ) ) ) |
| 67 |
66
|
exbidv |
⊢ ( 𝑛 = 𝑀 → ( ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ↔ ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ 𝑀 ) / 𝑎 ] 𝜃 ) ) ) ) |
| 68 |
67
|
rspcev |
⊢ ( ( 𝑀 ∈ 𝑍 ∧ ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑀 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ 𝑀 ) / 𝑎 ] 𝜃 ) ) ) → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) |
| 69 |
14 41 68
|
sylancr |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝜃 ) → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) |
| 70 |
69
|
adantll |
⊢ ( ( ( 𝜂 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝜃 ) → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) |
| 71 |
70
|
a1d |
⊢ ( ( ( 𝜂 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝜃 ) → ( ∀ 𝑑 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ¬ 𝑑 𝑅 𝑎 → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
| 72 |
|
breq1 |
⊢ ( 𝑑 = 𝑏 → ( 𝑑 𝑅 𝑎 ↔ 𝑏 𝑅 𝑎 ) ) |
| 73 |
72
|
rspcev |
⊢ ( ( 𝑏 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ∧ 𝑏 𝑅 𝑎 ) → ∃ 𝑑 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) 𝑑 𝑅 𝑎 ) |
| 74 |
73
|
expcom |
⊢ ( 𝑏 𝑅 𝑎 → ( 𝑏 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) → ∃ 𝑑 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) 𝑑 𝑅 𝑎 ) ) |
| 75 |
11 74
|
syl |
⊢ ( ( ( 𝜂 ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑏 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) → ∃ 𝑑 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) 𝑑 𝑅 𝑎 ) ) |
| 76 |
|
dfrex2 |
⊢ ( ∃ 𝑑 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) 𝑑 𝑅 𝑎 ↔ ¬ ∀ 𝑑 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ¬ 𝑑 𝑅 𝑎 ) |
| 77 |
75 76
|
imbitrdi |
⊢ ( ( ( 𝜂 ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑏 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) → ¬ ∀ 𝑑 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ¬ 𝑑 𝑅 𝑎 ) ) |
| 78 |
77
|
con2d |
⊢ ( ( ( 𝜂 ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ∀ 𝑑 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ¬ 𝑑 𝑅 𝑎 → ¬ 𝑏 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ) ) |
| 79 |
|
eldif |
⊢ ( 𝑏 ∈ ( 𝐴 ∖ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ) ↔ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ) ) |
| 80 |
79
|
simplbi2 |
⊢ ( 𝑏 ∈ 𝐴 → ( ¬ 𝑏 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) → 𝑏 ∈ ( 𝐴 ∖ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ) ) ) |
| 81 |
|
ssrab2 |
⊢ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ⊆ 𝐴 |
| 82 |
|
dfss4 |
⊢ ( { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ⊆ 𝐴 ↔ ( 𝐴 ∖ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ) = { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) |
| 83 |
81 82
|
mpbi |
⊢ ( 𝐴 ∖ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ) = { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } |
| 84 |
83
|
eleq2i |
⊢ ( 𝑏 ∈ ( 𝐴 ∖ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ) ↔ 𝑏 ∈ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) |
| 85 |
|
eqeq2 |
⊢ ( 𝑐 = 𝑏 → ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ↔ ( 𝑓 ‘ 𝑀 ) = 𝑏 ) ) |
| 86 |
85
|
anbi1d |
⊢ ( 𝑐 = 𝑏 → ( ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ↔ ( ( 𝑓 ‘ 𝑀 ) = 𝑏 ∧ 𝜏 ) ) ) |
| 87 |
86
|
3anbi2d |
⊢ ( 𝑐 = 𝑏 → ( ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ↔ ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑏 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
| 88 |
87
|
exbidv |
⊢ ( 𝑐 = 𝑏 → ( ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ↔ ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑏 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
| 89 |
88
|
rexbidv |
⊢ ( 𝑐 = 𝑏 → ( ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ↔ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑏 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
| 90 |
89
|
elrab3 |
⊢ ( 𝑏 ∈ 𝐴 → ( 𝑏 ∈ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ↔ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑏 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
| 91 |
84 90
|
bitrid |
⊢ ( 𝑏 ∈ 𝐴 → ( 𝑏 ∈ ( 𝐴 ∖ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ) ↔ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑏 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
| 92 |
80 91
|
sylibd |
⊢ ( 𝑏 ∈ 𝐴 → ( ¬ 𝑏 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑏 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
| 93 |
92
|
ad2antll |
⊢ ( ( ( 𝜂 ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ¬ 𝑏 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑏 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
| 94 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑚 ) ) |
| 95 |
94
|
feq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ↔ 𝑓 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ) ) |
| 96 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑚 ) ) |
| 97 |
96
|
sbceq1d |
⊢ ( 𝑛 = 𝑚 → ( [ ( 𝑓 ‘ 𝑛 ) / 𝑎 ] 𝜃 ↔ [ ( 𝑓 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ) |
| 98 |
45 97
|
bitr3id |
⊢ ( 𝑛 = 𝑚 → ( 𝜏 ↔ [ ( 𝑓 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ) |
| 99 |
98
|
anbi2d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝑓 ‘ 𝑀 ) = 𝑏 ∧ 𝜏 ) ↔ ( ( 𝑓 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑓 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ) ) |
| 100 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑁 ... 𝑛 ) = ( 𝑁 ... 𝑚 ) ) |
| 101 |
100
|
raleqdv |
⊢ ( 𝑛 = 𝑚 → ( ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ↔ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) 𝜒 ) ) |
| 102 |
95 99 101
|
3anbi123d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑏 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ↔ ( 𝑓 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑓 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) 𝜒 ) ) ) |
| 103 |
102
|
exbidv |
⊢ ( 𝑛 = 𝑚 → ( ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑏 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ↔ ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑓 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) 𝜒 ) ) ) |
| 104 |
103
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑏 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ↔ ∃ 𝑚 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑓 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) 𝜒 ) ) |
| 105 |
|
feq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ↔ 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ) ) |
| 106 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ 𝑀 ) = ( 𝑔 ‘ 𝑀 ) ) |
| 107 |
106
|
eqeq1d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ 𝑀 ) = 𝑏 ↔ ( 𝑔 ‘ 𝑀 ) = 𝑏 ) ) |
| 108 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ 𝑚 ) = ( 𝑔 ‘ 𝑚 ) ) |
| 109 |
108
|
sbceq1d |
⊢ ( 𝑓 = 𝑔 → ( [ ( 𝑓 ‘ 𝑚 ) / 𝑎 ] 𝜃 ↔ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ) |
| 110 |
107 109
|
anbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( ( 𝑓 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑓 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ↔ ( ( 𝑔 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ) ) |
| 111 |
|
fvex |
⊢ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ∈ V |
| 112 |
5
|
sbcbidv |
⊢ ( 𝑎 = ( 𝑓 ‘ ( 𝑘 − 1 ) ) → ( [ ( 𝑓 ‘ 𝑘 ) / 𝑏 ] 𝜑 ↔ [ ( 𝑓 ‘ 𝑘 ) / 𝑏 ] 𝜓 ) ) |
| 113 |
111 112
|
sbcie |
⊢ ( [ ( 𝑓 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑓 ‘ 𝑘 ) / 𝑏 ] 𝜑 ↔ [ ( 𝑓 ‘ 𝑘 ) / 𝑏 ] 𝜓 ) |
| 114 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑘 ) ∈ V |
| 115 |
114 6
|
sbcie |
⊢ ( [ ( 𝑓 ‘ 𝑘 ) / 𝑏 ] 𝜓 ↔ 𝜒 ) |
| 116 |
113 115
|
bitri |
⊢ ( [ ( 𝑓 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑓 ‘ 𝑘 ) / 𝑏 ] 𝜑 ↔ 𝜒 ) |
| 117 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ ( 𝑘 − 1 ) ) = ( 𝑔 ‘ ( 𝑘 − 1 ) ) ) |
| 118 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑘 ) ) |
| 119 |
118
|
sbceq1d |
⊢ ( 𝑓 = 𝑔 → ( [ ( 𝑓 ‘ 𝑘 ) / 𝑏 ] 𝜑 ↔ [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) |
| 120 |
117 119
|
sbceqbid |
⊢ ( 𝑓 = 𝑔 → ( [ ( 𝑓 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑓 ‘ 𝑘 ) / 𝑏 ] 𝜑 ↔ [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) |
| 121 |
116 120
|
bitr3id |
⊢ ( 𝑓 = 𝑔 → ( 𝜒 ↔ [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) |
| 122 |
121
|
ralbidv |
⊢ ( 𝑓 = 𝑔 → ( ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) 𝜒 ↔ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) |
| 123 |
105 110 122
|
3anbi123d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑓 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) 𝜒 ) ↔ ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) ) |
| 124 |
123
|
cbvexvw |
⊢ ( ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑓 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) 𝜒 ) ↔ ∃ 𝑔 ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) |
| 125 |
124
|
rexbii |
⊢ ( ∃ 𝑚 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑓 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) 𝜒 ) ↔ ∃ 𝑚 ∈ 𝑍 ∃ 𝑔 ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) |
| 126 |
104 125
|
bitri |
⊢ ( ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑏 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ↔ ∃ 𝑚 ∈ 𝑍 ∃ 𝑔 ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) |
| 127 |
3
|
peano2uzs |
⊢ ( 𝑚 ∈ 𝑍 → ( 𝑚 + 1 ) ∈ 𝑍 ) |
| 128 |
127
|
ad2antlr |
⊢ ( ( ( ( ( 𝜂 ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) → ( 𝑚 + 1 ) ∈ 𝑍 ) |
| 129 |
|
sbceq2a |
⊢ ( 𝑑 = 𝑏 → ( [ 𝑑 / 𝑏 ] 𝜑 ↔ 𝜑 ) ) |
| 130 |
129
|
anbi1d |
⊢ ( 𝑑 = 𝑏 → ( ( [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑎 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ) ) |
| 131 |
130
|
anbi1d |
⊢ ( 𝑑 = 𝑏 → ( ( ( [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑚 ∈ 𝑍 ) ↔ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑚 ∈ 𝑍 ) ) ) |
| 132 |
|
eqeq2 |
⊢ ( 𝑑 = 𝑏 → ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ↔ ( 𝑔 ‘ 𝑀 ) = 𝑏 ) ) |
| 133 |
132
|
anbi1d |
⊢ ( 𝑑 = 𝑏 → ( ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ↔ ( ( 𝑔 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ) ) |
| 134 |
133
|
3anbi2d |
⊢ ( 𝑑 = 𝑏 → ( ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ↔ ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) ) |
| 135 |
134
|
imbi1d |
⊢ ( 𝑑 = 𝑏 → ( ( ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) → ∃ 𝑓 ( 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ) ) ↔ ( ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) → ∃ 𝑓 ( 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ) ) ) ) |
| 136 |
131 135
|
imbi12d |
⊢ ( 𝑑 = 𝑏 → ( ( ( ( [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) → ∃ 𝑓 ( 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) → ∃ 𝑓 ( 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ) ) ) ) ) |
| 137 |
|
sbceq2a |
⊢ ( 𝑐 = 𝑎 → ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ↔ [ 𝑑 / 𝑏 ] 𝜑 ) ) |
| 138 |
|
eleq1 |
⊢ ( 𝑐 = 𝑎 → ( 𝑐 ∈ 𝐴 ↔ 𝑎 ∈ 𝐴 ) ) |
| 139 |
137 138
|
anbi12d |
⊢ ( 𝑐 = 𝑎 → ( ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑐 ∈ 𝐴 ) ↔ ( [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑎 ∈ 𝐴 ) ) ) |
| 140 |
139
|
anbi1d |
⊢ ( 𝑐 = 𝑎 → ( ( ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑚 ∈ 𝑍 ) ↔ ( ( [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑚 ∈ 𝑍 ) ) ) |
| 141 |
|
eqeq2 |
⊢ ( 𝑐 = 𝑎 → ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ↔ ( 𝑓 ‘ 𝑀 ) = 𝑎 ) ) |
| 142 |
141
|
anbi1d |
⊢ ( 𝑐 = 𝑎 → ( ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ↔ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ) ) |
| 143 |
142
|
3anbi2d |
⊢ ( 𝑐 = 𝑎 → ( ( 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ) ↔ ( 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ) ) ) |
| 144 |
143
|
exbidv |
⊢ ( 𝑐 = 𝑎 → ( ∃ 𝑓 ( 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ) ↔ ∃ 𝑓 ( 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ) ) ) |
| 145 |
144
|
imbi2d |
⊢ ( 𝑐 = 𝑎 → ( ( ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) → ∃ 𝑓 ( 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ) ) ↔ ( ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) → ∃ 𝑓 ( 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ) ) ) ) |
| 146 |
140 145
|
imbi12d |
⊢ ( 𝑐 = 𝑎 → ( ( ( ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) → ∃ 𝑓 ( 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ) ) ) ↔ ( ( ( [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) → ∃ 𝑓 ( 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ) ) ) ) ) |
| 147 |
|
peano2uz |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 148 |
147 3
|
eleq2s |
⊢ ( 𝑚 ∈ 𝑍 → ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 149 |
|
elfzp12 |
⊢ ( ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↔ ( 𝑥 = 𝑀 ∨ 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) ) ) ) |
| 150 |
148 149
|
syl |
⊢ ( 𝑚 ∈ 𝑍 → ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↔ ( 𝑥 = 𝑀 ∨ 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) ) ) ) |
| 151 |
150
|
ad2antlr |
⊢ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ) → ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↔ ( 𝑥 = 𝑀 ∨ 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) ) ) ) |
| 152 |
|
iftrue |
⊢ ( 𝑥 = 𝑀 → if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) = 𝑐 ) |
| 153 |
152
|
eleq1d |
⊢ ( 𝑥 = 𝑀 → ( if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ∈ 𝐴 ↔ 𝑐 ∈ 𝐴 ) ) |
| 154 |
153
|
biimprcd |
⊢ ( 𝑐 ∈ 𝐴 → ( 𝑥 = 𝑀 → if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ∈ 𝐴 ) ) |
| 155 |
154
|
ad2antrr |
⊢ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ) → ( 𝑥 = 𝑀 → if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ∈ 𝐴 ) ) |
| 156 |
|
1re |
⊢ 1 ∈ ℝ |
| 157 |
52 156
|
readdcli |
⊢ ( 𝑀 + 1 ) ∈ ℝ |
| 158 |
52 157
|
ltnlei |
⊢ ( 𝑀 < ( 𝑀 + 1 ) ↔ ¬ ( 𝑀 + 1 ) ≤ 𝑀 ) |
| 159 |
53 158
|
mpbi |
⊢ ¬ ( 𝑀 + 1 ) ≤ 𝑀 |
| 160 |
|
eleq1 |
⊢ ( 𝑥 = 𝑀 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) ↔ 𝑀 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) ) ) |
| 161 |
|
elfzle1 |
⊢ ( 𝑀 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) → ( 𝑀 + 1 ) ≤ 𝑀 ) |
| 162 |
160 161
|
biimtrdi |
⊢ ( 𝑥 = 𝑀 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) → ( 𝑀 + 1 ) ≤ 𝑀 ) ) |
| 163 |
162
|
com12 |
⊢ ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) → ( 𝑥 = 𝑀 → ( 𝑀 + 1 ) ≤ 𝑀 ) ) |
| 164 |
159 163
|
mtoi |
⊢ ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) → ¬ 𝑥 = 𝑀 ) |
| 165 |
164
|
adantl |
⊢ ( ( ( 𝑚 ∈ 𝑍 ∧ 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ) ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) ) → ¬ 𝑥 = 𝑀 ) |
| 166 |
165
|
iffalsed |
⊢ ( ( ( 𝑚 ∈ 𝑍 ∧ 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ) ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) ) → if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) = ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) |
| 167 |
|
elfzelz |
⊢ ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) → 𝑥 ∈ ℤ ) |
| 168 |
167
|
adantl |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) ) → 𝑥 ∈ ℤ ) |
| 169 |
|
eluzelz |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑚 ∈ ℤ ) |
| 170 |
169 3
|
eleq2s |
⊢ ( 𝑚 ∈ 𝑍 → 𝑚 ∈ ℤ ) |
| 171 |
170
|
peano2zd |
⊢ ( 𝑚 ∈ 𝑍 → ( 𝑚 + 1 ) ∈ ℤ ) |
| 172 |
|
1z |
⊢ 1 ∈ ℤ |
| 173 |
|
fzsubel |
⊢ ( ( ( ( 𝑀 + 1 ) ∈ ℤ ∧ ( 𝑚 + 1 ) ∈ ℤ ) ∧ ( 𝑥 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) ↔ ( 𝑥 − 1 ) ∈ ( ( ( 𝑀 + 1 ) − 1 ) ... ( ( 𝑚 + 1 ) − 1 ) ) ) ) |
| 174 |
173
|
biimpd |
⊢ ( ( ( ( 𝑀 + 1 ) ∈ ℤ ∧ ( 𝑚 + 1 ) ∈ ℤ ) ∧ ( 𝑥 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) → ( 𝑥 − 1 ) ∈ ( ( ( 𝑀 + 1 ) − 1 ) ... ( ( 𝑚 + 1 ) − 1 ) ) ) ) |
| 175 |
172 174
|
mpanr2 |
⊢ ( ( ( ( 𝑀 + 1 ) ∈ ℤ ∧ ( 𝑚 + 1 ) ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) → ( 𝑥 − 1 ) ∈ ( ( ( 𝑀 + 1 ) − 1 ) ... ( ( 𝑚 + 1 ) − 1 ) ) ) ) |
| 176 |
55 175
|
mpanl1 |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) → ( 𝑥 − 1 ) ∈ ( ( ( 𝑀 + 1 ) − 1 ) ... ( ( 𝑚 + 1 ) − 1 ) ) ) ) |
| 177 |
176
|
ex |
⊢ ( ( 𝑚 + 1 ) ∈ ℤ → ( 𝑥 ∈ ℤ → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) → ( 𝑥 − 1 ) ∈ ( ( ( 𝑀 + 1 ) − 1 ) ... ( ( 𝑚 + 1 ) − 1 ) ) ) ) ) |
| 178 |
171 177
|
syl |
⊢ ( 𝑚 ∈ 𝑍 → ( 𝑥 ∈ ℤ → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) → ( 𝑥 − 1 ) ∈ ( ( ( 𝑀 + 1 ) − 1 ) ... ( ( 𝑚 + 1 ) − 1 ) ) ) ) ) |
| 179 |
178
|
com23 |
⊢ ( 𝑚 ∈ 𝑍 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) → ( 𝑥 ∈ ℤ → ( 𝑥 − 1 ) ∈ ( ( ( 𝑀 + 1 ) − 1 ) ... ( ( 𝑚 + 1 ) − 1 ) ) ) ) ) |
| 180 |
179
|
imp |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) ) → ( 𝑥 ∈ ℤ → ( 𝑥 − 1 ) ∈ ( ( ( 𝑀 + 1 ) − 1 ) ... ( ( 𝑚 + 1 ) − 1 ) ) ) ) |
| 181 |
168 180
|
mpd |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) ) → ( 𝑥 − 1 ) ∈ ( ( ( 𝑀 + 1 ) − 1 ) ... ( ( 𝑚 + 1 ) − 1 ) ) ) |
| 182 |
52
|
recni |
⊢ 𝑀 ∈ ℂ |
| 183 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 184 |
182 183
|
pncan3oi |
⊢ ( ( 𝑀 + 1 ) − 1 ) = 𝑀 |
| 185 |
184
|
a1i |
⊢ ( 𝑚 ∈ 𝑍 → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 ) |
| 186 |
170
|
zcnd |
⊢ ( 𝑚 ∈ 𝑍 → 𝑚 ∈ ℂ ) |
| 187 |
|
pncan |
⊢ ( ( 𝑚 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑚 + 1 ) − 1 ) = 𝑚 ) |
| 188 |
186 183 187
|
sylancl |
⊢ ( 𝑚 ∈ 𝑍 → ( ( 𝑚 + 1 ) − 1 ) = 𝑚 ) |
| 189 |
185 188
|
oveq12d |
⊢ ( 𝑚 ∈ 𝑍 → ( ( ( 𝑀 + 1 ) − 1 ) ... ( ( 𝑚 + 1 ) − 1 ) ) = ( 𝑀 ... 𝑚 ) ) |
| 190 |
189
|
adantr |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) ) → ( ( ( 𝑀 + 1 ) − 1 ) ... ( ( 𝑚 + 1 ) − 1 ) ) = ( 𝑀 ... 𝑚 ) ) |
| 191 |
181 190
|
eleqtrd |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) ) → ( 𝑥 − 1 ) ∈ ( 𝑀 ... 𝑚 ) ) |
| 192 |
|
ffvelcdm |
⊢ ( ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( 𝑥 − 1 ) ∈ ( 𝑀 ... 𝑚 ) ) → ( 𝑔 ‘ ( 𝑥 − 1 ) ) ∈ 𝐴 ) |
| 193 |
191 192
|
sylan2 |
⊢ ( ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) ) ) → ( 𝑔 ‘ ( 𝑥 − 1 ) ) ∈ 𝐴 ) |
| 194 |
193
|
anassrs |
⊢ ( ( ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) ) → ( 𝑔 ‘ ( 𝑥 − 1 ) ) ∈ 𝐴 ) |
| 195 |
194
|
ancom1s |
⊢ ( ( ( 𝑚 ∈ 𝑍 ∧ 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ) ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) ) → ( 𝑔 ‘ ( 𝑥 − 1 ) ) ∈ 𝐴 ) |
| 196 |
166 195
|
eqeltrd |
⊢ ( ( ( 𝑚 ∈ 𝑍 ∧ 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ) ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) ) → if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ∈ 𝐴 ) |
| 197 |
196
|
ex |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ) → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) → if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ∈ 𝐴 ) ) |
| 198 |
197
|
adantll |
⊢ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ) → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) → if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ∈ 𝐴 ) ) |
| 199 |
155 198
|
jaod |
⊢ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ) → ( ( 𝑥 = 𝑀 ∨ 𝑥 ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) ) → if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ∈ 𝐴 ) ) |
| 200 |
151 199
|
sylbid |
⊢ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ) → ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) → if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ∈ 𝐴 ) ) |
| 201 |
200
|
ralrimiv |
⊢ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ) → ∀ 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ∈ 𝐴 ) |
| 202 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) = ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) |
| 203 |
202
|
fmpt |
⊢ ( ∀ 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ∈ 𝐴 ↔ ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ) |
| 204 |
201 203
|
sylib |
⊢ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ) → ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ) |
| 205 |
204
|
adantlll |
⊢ ( ( ( ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ) → ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ) |
| 206 |
205
|
3ad2antr1 |
⊢ ( ( ( ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) → ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ) |
| 207 |
|
eluzfz1 |
⊢ ( ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ) |
| 208 |
147 207
|
syl |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ) |
| 209 |
208 3
|
eleq2s |
⊢ ( 𝑚 ∈ 𝑍 → 𝑀 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ) |
| 210 |
|
vex |
⊢ 𝑐 ∈ V |
| 211 |
152 202 210
|
fvmpt |
⊢ ( 𝑀 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑀 ) = 𝑐 ) |
| 212 |
209 211
|
syl |
⊢ ( 𝑚 ∈ 𝑍 → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑀 ) = 𝑐 ) |
| 213 |
212
|
ad2antlr |
⊢ ( ( ( ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑀 ) = 𝑐 ) |
| 214 |
|
eluzfz2 |
⊢ ( ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑚 + 1 ) ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ) |
| 215 |
147 214
|
syl |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑚 + 1 ) ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ) |
| 216 |
215 3
|
eleq2s |
⊢ ( 𝑚 ∈ 𝑍 → ( 𝑚 + 1 ) ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ) |
| 217 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( 𝑥 = 𝑀 ↔ ( 𝑚 + 1 ) = 𝑀 ) ) |
| 218 |
|
fvoveq1 |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( 𝑔 ‘ ( 𝑥 − 1 ) ) = ( 𝑔 ‘ ( ( 𝑚 + 1 ) − 1 ) ) ) |
| 219 |
217 218
|
ifbieq2d |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) = if ( ( 𝑚 + 1 ) = 𝑀 , 𝑐 , ( 𝑔 ‘ ( ( 𝑚 + 1 ) − 1 ) ) ) ) |
| 220 |
|
fvex |
⊢ ( 𝑔 ‘ ( ( 𝑚 + 1 ) − 1 ) ) ∈ V |
| 221 |
210 220
|
ifex |
⊢ if ( ( 𝑚 + 1 ) = 𝑀 , 𝑐 , ( 𝑔 ‘ ( ( 𝑚 + 1 ) − 1 ) ) ) ∈ V |
| 222 |
219 202 221
|
fvmpt |
⊢ ( ( 𝑚 + 1 ) ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑚 + 1 ) ) = if ( ( 𝑚 + 1 ) = 𝑀 , 𝑐 , ( 𝑔 ‘ ( ( 𝑚 + 1 ) − 1 ) ) ) ) |
| 223 |
216 222
|
syl |
⊢ ( 𝑚 ∈ 𝑍 → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑚 + 1 ) ) = if ( ( 𝑚 + 1 ) = 𝑀 , 𝑐 , ( 𝑔 ‘ ( ( 𝑚 + 1 ) − 1 ) ) ) ) |
| 224 |
|
eluzle |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑚 ) |
| 225 |
224 3
|
eleq2s |
⊢ ( 𝑚 ∈ 𝑍 → 𝑀 ≤ 𝑚 ) |
| 226 |
|
zleltp1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ) → ( 𝑀 ≤ 𝑚 ↔ 𝑀 < ( 𝑚 + 1 ) ) ) |
| 227 |
2 170 226
|
sylancr |
⊢ ( 𝑚 ∈ 𝑍 → ( 𝑀 ≤ 𝑚 ↔ 𝑀 < ( 𝑚 + 1 ) ) ) |
| 228 |
225 227
|
mpbid |
⊢ ( 𝑚 ∈ 𝑍 → 𝑀 < ( 𝑚 + 1 ) ) |
| 229 |
|
ltne |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑀 < ( 𝑚 + 1 ) ) → ( 𝑚 + 1 ) ≠ 𝑀 ) |
| 230 |
52 228 229
|
sylancr |
⊢ ( 𝑚 ∈ 𝑍 → ( 𝑚 + 1 ) ≠ 𝑀 ) |
| 231 |
230
|
neneqd |
⊢ ( 𝑚 ∈ 𝑍 → ¬ ( 𝑚 + 1 ) = 𝑀 ) |
| 232 |
231
|
iffalsed |
⊢ ( 𝑚 ∈ 𝑍 → if ( ( 𝑚 + 1 ) = 𝑀 , 𝑐 , ( 𝑔 ‘ ( ( 𝑚 + 1 ) − 1 ) ) ) = ( 𝑔 ‘ ( ( 𝑚 + 1 ) − 1 ) ) ) |
| 233 |
188
|
fveq2d |
⊢ ( 𝑚 ∈ 𝑍 → ( 𝑔 ‘ ( ( 𝑚 + 1 ) − 1 ) ) = ( 𝑔 ‘ 𝑚 ) ) |
| 234 |
223 232 233
|
3eqtrd |
⊢ ( 𝑚 ∈ 𝑍 → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑚 + 1 ) ) = ( 𝑔 ‘ 𝑚 ) ) |
| 235 |
234
|
sbceq1d |
⊢ ( 𝑚 ∈ 𝑍 → ( [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ↔ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ) |
| 236 |
235
|
biimpar |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) → [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) |
| 237 |
236
|
ad2ant2l |
⊢ ( ( ( ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ) → [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) |
| 238 |
237
|
3ad2antr2 |
⊢ ( ( ( ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) → [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) |
| 239 |
|
eluzp1p1 |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
| 240 |
239 3
|
eleq2s |
⊢ ( 𝑚 ∈ 𝑍 → ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
| 241 |
4
|
fveq2i |
⊢ ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ ( 𝑀 + 1 ) ) |
| 242 |
240 241
|
eleqtrrdi |
⊢ ( 𝑚 ∈ 𝑍 → ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 243 |
|
elfzp12 |
⊢ ( ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑗 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) ↔ ( 𝑗 = 𝑁 ∨ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) ) ) |
| 244 |
242 243
|
syl |
⊢ ( 𝑚 ∈ 𝑍 → ( 𝑗 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) ↔ ( 𝑗 = 𝑁 ∨ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) ) ) |
| 245 |
244
|
biimpa |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑗 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) ) → ( 𝑗 = 𝑁 ∨ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) ) |
| 246 |
245
|
adantll |
⊢ ( ( ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑗 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) ) → ( 𝑗 = 𝑁 ∨ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) ) |
| 247 |
246
|
adantlr |
⊢ ( ( ( ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑚 ∈ 𝑍 ) ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) ∧ 𝑗 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) ) → ( 𝑗 = 𝑁 ∨ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) ) |
| 248 |
|
oveq1 |
⊢ ( 𝑗 = 𝑁 → ( 𝑗 − 1 ) = ( 𝑁 − 1 ) ) |
| 249 |
4
|
oveq1i |
⊢ ( 𝑁 − 1 ) = ( ( 𝑀 + 1 ) − 1 ) |
| 250 |
249 184
|
eqtri |
⊢ ( 𝑁 − 1 ) = 𝑀 |
| 251 |
248 250
|
eqtrdi |
⊢ ( 𝑗 = 𝑁 → ( 𝑗 − 1 ) = 𝑀 ) |
| 252 |
251
|
fveq2d |
⊢ ( 𝑗 = 𝑁 → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 − 1 ) ) = ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑀 ) ) |
| 253 |
252
|
ad2antll |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ 𝑗 = 𝑁 ) ) → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 − 1 ) ) = ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑀 ) ) |
| 254 |
212
|
adantr |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ 𝑗 = 𝑁 ) ) → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑀 ) = 𝑐 ) |
| 255 |
253 254
|
eqtrd |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ 𝑗 = 𝑁 ) ) → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 − 1 ) ) = 𝑐 ) |
| 256 |
4
|
eqeq2i |
⊢ ( 𝑗 = 𝑁 ↔ 𝑗 = ( 𝑀 + 1 ) ) |
| 257 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑀 + 1 ) → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) = ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑀 + 1 ) ) ) |
| 258 |
256 257
|
sylbi |
⊢ ( 𝑗 = 𝑁 → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) = ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑀 + 1 ) ) ) |
| 259 |
258
|
ad2antll |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ 𝑗 = 𝑁 ) ) → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) = ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑀 + 1 ) ) ) |
| 260 |
52 157 53
|
ltleii |
⊢ 𝑀 ≤ ( 𝑀 + 1 ) |
| 261 |
|
eluz2 |
⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ ( 𝑀 + 1 ) ∈ ℤ ∧ 𝑀 ≤ ( 𝑀 + 1 ) ) ) |
| 262 |
2 55 260 261
|
mpbir3an |
⊢ ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) |
| 263 |
|
fzss1 |
⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) ⊆ ( 𝑀 ... ( 𝑚 + 1 ) ) ) |
| 264 |
262 263
|
ax-mp |
⊢ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) ⊆ ( 𝑀 ... ( 𝑚 + 1 ) ) |
| 265 |
|
eluzfz1 |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑚 ) ) |
| 266 |
265 3
|
eleq2s |
⊢ ( 𝑚 ∈ 𝑍 → 𝑀 ∈ ( 𝑀 ... 𝑚 ) ) |
| 267 |
|
fzaddel |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ) ∧ ( 𝑀 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( 𝑀 ∈ ( 𝑀 ... 𝑚 ) ↔ ( 𝑀 + 1 ) ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) ) ) |
| 268 |
2 172 267
|
mpanr12 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ) → ( 𝑀 ∈ ( 𝑀 ... 𝑚 ) ↔ ( 𝑀 + 1 ) ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) ) ) |
| 269 |
2 170 268
|
sylancr |
⊢ ( 𝑚 ∈ 𝑍 → ( 𝑀 ∈ ( 𝑀 ... 𝑚 ) ↔ ( 𝑀 + 1 ) ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) ) ) |
| 270 |
266 269
|
mpbid |
⊢ ( 𝑚 ∈ 𝑍 → ( 𝑀 + 1 ) ∈ ( ( 𝑀 + 1 ) ... ( 𝑚 + 1 ) ) ) |
| 271 |
264 270
|
sselid |
⊢ ( 𝑚 ∈ 𝑍 → ( 𝑀 + 1 ) ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ) |
| 272 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑀 + 1 ) → ( 𝑥 = 𝑀 ↔ ( 𝑀 + 1 ) = 𝑀 ) ) |
| 273 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑀 + 1 ) → ( 𝑥 − 1 ) = ( ( 𝑀 + 1 ) − 1 ) ) |
| 274 |
273 184
|
eqtrdi |
⊢ ( 𝑥 = ( 𝑀 + 1 ) → ( 𝑥 − 1 ) = 𝑀 ) |
| 275 |
274
|
fveq2d |
⊢ ( 𝑥 = ( 𝑀 + 1 ) → ( 𝑔 ‘ ( 𝑥 − 1 ) ) = ( 𝑔 ‘ 𝑀 ) ) |
| 276 |
272 275
|
ifbieq2d |
⊢ ( 𝑥 = ( 𝑀 + 1 ) → if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) = if ( ( 𝑀 + 1 ) = 𝑀 , 𝑐 , ( 𝑔 ‘ 𝑀 ) ) ) |
| 277 |
|
fvex |
⊢ ( 𝑔 ‘ 𝑀 ) ∈ V |
| 278 |
210 277
|
ifex |
⊢ if ( ( 𝑀 + 1 ) = 𝑀 , 𝑐 , ( 𝑔 ‘ 𝑀 ) ) ∈ V |
| 279 |
276 202 278
|
fvmpt |
⊢ ( ( 𝑀 + 1 ) ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑀 + 1 ) ) = if ( ( 𝑀 + 1 ) = 𝑀 , 𝑐 , ( 𝑔 ‘ 𝑀 ) ) ) |
| 280 |
271 279
|
syl |
⊢ ( 𝑚 ∈ 𝑍 → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑀 + 1 ) ) = if ( ( 𝑀 + 1 ) = 𝑀 , 𝑐 , ( 𝑔 ‘ 𝑀 ) ) ) |
| 281 |
52 53
|
gtneii |
⊢ ( 𝑀 + 1 ) ≠ 𝑀 |
| 282 |
|
ifnefalse |
⊢ ( ( 𝑀 + 1 ) ≠ 𝑀 → if ( ( 𝑀 + 1 ) = 𝑀 , 𝑐 , ( 𝑔 ‘ 𝑀 ) ) = ( 𝑔 ‘ 𝑀 ) ) |
| 283 |
281 282
|
ax-mp |
⊢ if ( ( 𝑀 + 1 ) = 𝑀 , 𝑐 , ( 𝑔 ‘ 𝑀 ) ) = ( 𝑔 ‘ 𝑀 ) |
| 284 |
280 283
|
eqtrdi |
⊢ ( 𝑚 ∈ 𝑍 → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑀 + 1 ) ) = ( 𝑔 ‘ 𝑀 ) ) |
| 285 |
284
|
adantr |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ 𝑗 = 𝑁 ) ) → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑀 + 1 ) ) = ( 𝑔 ‘ 𝑀 ) ) |
| 286 |
|
simprl |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ 𝑗 = 𝑁 ) ) → ( 𝑔 ‘ 𝑀 ) = 𝑑 ) |
| 287 |
259 285 286
|
3eqtrd |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ 𝑗 = 𝑁 ) ) → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) = 𝑑 ) |
| 288 |
287
|
sbceq1d |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ 𝑗 = 𝑁 ) ) → ( [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) / 𝑏 ] 𝜑 ↔ [ 𝑑 / 𝑏 ] 𝜑 ) ) |
| 289 |
255 288
|
sbceqbid |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ 𝑗 = 𝑁 ) ) → ( [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) / 𝑏 ] 𝜑 ↔ [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ) ) |
| 290 |
289
|
biimparc |
⊢ ( ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ∧ ( 𝑚 ∈ 𝑍 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ 𝑗 = 𝑁 ) ) ) → [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) / 𝑏 ] 𝜑 ) |
| 291 |
290
|
anassrs |
⊢ ( ( ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑚 ∈ 𝑍 ) ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ 𝑗 = 𝑁 ) ) → [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) / 𝑏 ] 𝜑 ) |
| 292 |
291
|
anassrs |
⊢ ( ( ( ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝑔 ‘ 𝑀 ) = 𝑑 ) ∧ 𝑗 = 𝑁 ) → [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) / 𝑏 ] 𝜑 ) |
| 293 |
292
|
adantlrr |
⊢ ( ( ( ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑚 ∈ 𝑍 ) ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) ∧ 𝑗 = 𝑁 ) → [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) / 𝑏 ] 𝜑 ) |
| 294 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) → 𝑗 ∈ ℤ ) |
| 295 |
294
|
adantl |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) → 𝑗 ∈ ℤ ) |
| 296 |
4 55
|
eqeltri |
⊢ 𝑁 ∈ ℤ |
| 297 |
|
peano2z |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 + 1 ) ∈ ℤ ) |
| 298 |
296 297
|
ax-mp |
⊢ ( 𝑁 + 1 ) ∈ ℤ |
| 299 |
|
fzsubel |
⊢ ( ( ( ( 𝑁 + 1 ) ∈ ℤ ∧ ( 𝑚 + 1 ) ∈ ℤ ) ∧ ( 𝑗 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ↔ ( 𝑗 − 1 ) ∈ ( ( ( 𝑁 + 1 ) − 1 ) ... ( ( 𝑚 + 1 ) − 1 ) ) ) ) |
| 300 |
299
|
biimpd |
⊢ ( ( ( ( 𝑁 + 1 ) ∈ ℤ ∧ ( 𝑚 + 1 ) ∈ ℤ ) ∧ ( 𝑗 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) → ( 𝑗 − 1 ) ∈ ( ( ( 𝑁 + 1 ) − 1 ) ... ( ( 𝑚 + 1 ) − 1 ) ) ) ) |
| 301 |
172 300
|
mpanr2 |
⊢ ( ( ( ( 𝑁 + 1 ) ∈ ℤ ∧ ( 𝑚 + 1 ) ∈ ℤ ) ∧ 𝑗 ∈ ℤ ) → ( 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) → ( 𝑗 − 1 ) ∈ ( ( ( 𝑁 + 1 ) − 1 ) ... ( ( 𝑚 + 1 ) − 1 ) ) ) ) |
| 302 |
301
|
ex |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℤ ∧ ( 𝑚 + 1 ) ∈ ℤ ) → ( 𝑗 ∈ ℤ → ( 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) → ( 𝑗 − 1 ) ∈ ( ( ( 𝑁 + 1 ) − 1 ) ... ( ( 𝑚 + 1 ) − 1 ) ) ) ) ) |
| 303 |
298 171 302
|
sylancr |
⊢ ( 𝑚 ∈ 𝑍 → ( 𝑗 ∈ ℤ → ( 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) → ( 𝑗 − 1 ) ∈ ( ( ( 𝑁 + 1 ) − 1 ) ... ( ( 𝑚 + 1 ) − 1 ) ) ) ) ) |
| 304 |
303
|
com23 |
⊢ ( 𝑚 ∈ 𝑍 → ( 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) → ( 𝑗 ∈ ℤ → ( 𝑗 − 1 ) ∈ ( ( ( 𝑁 + 1 ) − 1 ) ... ( ( 𝑚 + 1 ) − 1 ) ) ) ) ) |
| 305 |
304
|
imp |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) → ( 𝑗 ∈ ℤ → ( 𝑗 − 1 ) ∈ ( ( ( 𝑁 + 1 ) − 1 ) ... ( ( 𝑚 + 1 ) − 1 ) ) ) ) |
| 306 |
295 305
|
mpd |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) → ( 𝑗 − 1 ) ∈ ( ( ( 𝑁 + 1 ) − 1 ) ... ( ( 𝑚 + 1 ) − 1 ) ) ) |
| 307 |
296
|
zrei |
⊢ 𝑁 ∈ ℝ |
| 308 |
307
|
recni |
⊢ 𝑁 ∈ ℂ |
| 309 |
308 183
|
pncan3oi |
⊢ ( ( 𝑁 + 1 ) − 1 ) = 𝑁 |
| 310 |
309
|
a1i |
⊢ ( 𝑚 ∈ 𝑍 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 311 |
310 188
|
oveq12d |
⊢ ( 𝑚 ∈ 𝑍 → ( ( ( 𝑁 + 1 ) − 1 ) ... ( ( 𝑚 + 1 ) − 1 ) ) = ( 𝑁 ... 𝑚 ) ) |
| 312 |
311
|
adantr |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) → ( ( ( 𝑁 + 1 ) − 1 ) ... ( ( 𝑚 + 1 ) − 1 ) ) = ( 𝑁 ... 𝑚 ) ) |
| 313 |
306 312
|
eleqtrd |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) → ( 𝑗 − 1 ) ∈ ( 𝑁 ... 𝑚 ) ) |
| 314 |
|
fvoveq1 |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → ( 𝑔 ‘ ( 𝑘 − 1 ) ) = ( 𝑔 ‘ ( ( 𝑗 − 1 ) − 1 ) ) ) |
| 315 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → ( 𝑔 ‘ 𝑘 ) = ( 𝑔 ‘ ( 𝑗 − 1 ) ) ) |
| 316 |
315
|
sbceq1d |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → ( [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ↔ [ ( 𝑔 ‘ ( 𝑗 − 1 ) ) / 𝑏 ] 𝜑 ) ) |
| 317 |
314 316
|
sbceqbid |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → ( [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ↔ [ ( 𝑔 ‘ ( ( 𝑗 − 1 ) − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ ( 𝑗 − 1 ) ) / 𝑏 ] 𝜑 ) ) |
| 318 |
317
|
rspcva |
⊢ ( ( ( 𝑗 − 1 ) ∈ ( 𝑁 ... 𝑚 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) → [ ( 𝑔 ‘ ( ( 𝑗 − 1 ) − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ ( 𝑗 − 1 ) ) / 𝑏 ] 𝜑 ) |
| 319 |
313 318
|
sylan |
⊢ ( ( ( 𝑚 ∈ 𝑍 ∧ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) → [ ( 𝑔 ‘ ( ( 𝑗 − 1 ) − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ ( 𝑗 − 1 ) ) / 𝑏 ] 𝜑 ) |
| 320 |
4 262
|
eqeltri |
⊢ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) |
| 321 |
|
fzss1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 ... ( 𝑚 + 1 ) ) ⊆ ( 𝑀 ... ( 𝑚 + 1 ) ) ) |
| 322 |
320 321
|
ax-mp |
⊢ ( 𝑁 ... ( 𝑚 + 1 ) ) ⊆ ( 𝑀 ... ( 𝑚 + 1 ) ) |
| 323 |
|
fzssp1 |
⊢ ( 𝑁 ... 𝑚 ) ⊆ ( 𝑁 ... ( 𝑚 + 1 ) ) |
| 324 |
323 313
|
sselid |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) → ( 𝑗 − 1 ) ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) ) |
| 325 |
322 324
|
sselid |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) → ( 𝑗 − 1 ) ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ) |
| 326 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑗 − 1 ) → ( 𝑥 = 𝑀 ↔ ( 𝑗 − 1 ) = 𝑀 ) ) |
| 327 |
|
fvoveq1 |
⊢ ( 𝑥 = ( 𝑗 − 1 ) → ( 𝑔 ‘ ( 𝑥 − 1 ) ) = ( 𝑔 ‘ ( ( 𝑗 − 1 ) − 1 ) ) ) |
| 328 |
326 327
|
ifbieq2d |
⊢ ( 𝑥 = ( 𝑗 − 1 ) → if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) = if ( ( 𝑗 − 1 ) = 𝑀 , 𝑐 , ( 𝑔 ‘ ( ( 𝑗 − 1 ) − 1 ) ) ) ) |
| 329 |
|
fvex |
⊢ ( 𝑔 ‘ ( ( 𝑗 − 1 ) − 1 ) ) ∈ V |
| 330 |
210 329
|
ifex |
⊢ if ( ( 𝑗 − 1 ) = 𝑀 , 𝑐 , ( 𝑔 ‘ ( ( 𝑗 − 1 ) − 1 ) ) ) ∈ V |
| 331 |
328 202 330
|
fvmpt |
⊢ ( ( 𝑗 − 1 ) ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 − 1 ) ) = if ( ( 𝑗 − 1 ) = 𝑀 , 𝑐 , ( 𝑔 ‘ ( ( 𝑗 − 1 ) − 1 ) ) ) ) |
| 332 |
325 331
|
syl |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 − 1 ) ) = if ( ( 𝑗 − 1 ) = 𝑀 , 𝑐 , ( 𝑔 ‘ ( ( 𝑗 − 1 ) − 1 ) ) ) ) |
| 333 |
157
|
ltp1i |
⊢ ( 𝑀 + 1 ) < ( ( 𝑀 + 1 ) + 1 ) |
| 334 |
4
|
oveq1i |
⊢ ( 𝑁 + 1 ) = ( ( 𝑀 + 1 ) + 1 ) |
| 335 |
333 334
|
breqtrri |
⊢ ( 𝑀 + 1 ) < ( 𝑁 + 1 ) |
| 336 |
307 156
|
readdcli |
⊢ ( 𝑁 + 1 ) ∈ ℝ |
| 337 |
157 336
|
ltnlei |
⊢ ( ( 𝑀 + 1 ) < ( 𝑁 + 1 ) ↔ ¬ ( 𝑁 + 1 ) ≤ ( 𝑀 + 1 ) ) |
| 338 |
335 337
|
mpbi |
⊢ ¬ ( 𝑁 + 1 ) ≤ ( 𝑀 + 1 ) |
| 339 |
294
|
zcnd |
⊢ ( 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) → 𝑗 ∈ ℂ ) |
| 340 |
|
subadd |
⊢ ( ( 𝑗 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( ( 𝑗 − 1 ) = 𝑀 ↔ ( 1 + 𝑀 ) = 𝑗 ) ) |
| 341 |
183 182 340
|
mp3an23 |
⊢ ( 𝑗 ∈ ℂ → ( ( 𝑗 − 1 ) = 𝑀 ↔ ( 1 + 𝑀 ) = 𝑗 ) ) |
| 342 |
339 341
|
syl |
⊢ ( 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) → ( ( 𝑗 − 1 ) = 𝑀 ↔ ( 1 + 𝑀 ) = 𝑗 ) ) |
| 343 |
|
eqcom |
⊢ ( ( 1 + 𝑀 ) = 𝑗 ↔ 𝑗 = ( 1 + 𝑀 ) ) |
| 344 |
183 182
|
addcomi |
⊢ ( 1 + 𝑀 ) = ( 𝑀 + 1 ) |
| 345 |
344
|
eqeq2i |
⊢ ( 𝑗 = ( 1 + 𝑀 ) ↔ 𝑗 = ( 𝑀 + 1 ) ) |
| 346 |
343 345
|
bitri |
⊢ ( ( 1 + 𝑀 ) = 𝑗 ↔ 𝑗 = ( 𝑀 + 1 ) ) |
| 347 |
|
eleq1 |
⊢ ( 𝑗 = ( 𝑀 + 1 ) → ( 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ↔ ( 𝑀 + 1 ) ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) ) |
| 348 |
|
elfzle1 |
⊢ ( ( 𝑀 + 1 ) ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) → ( 𝑁 + 1 ) ≤ ( 𝑀 + 1 ) ) |
| 349 |
347 348
|
biimtrdi |
⊢ ( 𝑗 = ( 𝑀 + 1 ) → ( 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) → ( 𝑁 + 1 ) ≤ ( 𝑀 + 1 ) ) ) |
| 350 |
349
|
com12 |
⊢ ( 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) → ( 𝑗 = ( 𝑀 + 1 ) → ( 𝑁 + 1 ) ≤ ( 𝑀 + 1 ) ) ) |
| 351 |
346 350
|
biimtrid |
⊢ ( 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) → ( ( 1 + 𝑀 ) = 𝑗 → ( 𝑁 + 1 ) ≤ ( 𝑀 + 1 ) ) ) |
| 352 |
342 351
|
sylbid |
⊢ ( 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) → ( ( 𝑗 − 1 ) = 𝑀 → ( 𝑁 + 1 ) ≤ ( 𝑀 + 1 ) ) ) |
| 353 |
338 352
|
mtoi |
⊢ ( 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) → ¬ ( 𝑗 − 1 ) = 𝑀 ) |
| 354 |
353
|
adantl |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) → ¬ ( 𝑗 − 1 ) = 𝑀 ) |
| 355 |
354
|
iffalsed |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) → if ( ( 𝑗 − 1 ) = 𝑀 , 𝑐 , ( 𝑔 ‘ ( ( 𝑗 − 1 ) − 1 ) ) ) = ( 𝑔 ‘ ( ( 𝑗 − 1 ) − 1 ) ) ) |
| 356 |
332 355
|
eqtrd |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 − 1 ) ) = ( 𝑔 ‘ ( ( 𝑗 − 1 ) − 1 ) ) ) |
| 357 |
|
peano2uz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 358 |
|
fzss1 |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ⊆ ( 𝑀 ... ( 𝑚 + 1 ) ) ) |
| 359 |
320 357 358
|
mp2b |
⊢ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ⊆ ( 𝑀 ... ( 𝑚 + 1 ) ) |
| 360 |
|
simpr |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) → 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) |
| 361 |
359 360
|
sselid |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) → 𝑗 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ) |
| 362 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑗 → ( 𝑥 = 𝑀 ↔ 𝑗 = 𝑀 ) ) |
| 363 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑗 → ( 𝑔 ‘ ( 𝑥 − 1 ) ) = ( 𝑔 ‘ ( 𝑗 − 1 ) ) ) |
| 364 |
362 363
|
ifbieq2d |
⊢ ( 𝑥 = 𝑗 → if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) = if ( 𝑗 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑗 − 1 ) ) ) ) |
| 365 |
|
fvex |
⊢ ( 𝑔 ‘ ( 𝑗 − 1 ) ) ∈ V |
| 366 |
210 365
|
ifex |
⊢ if ( 𝑗 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑗 − 1 ) ) ) ∈ V |
| 367 |
364 202 366
|
fvmpt |
⊢ ( 𝑗 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) = if ( 𝑗 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑗 − 1 ) ) ) ) |
| 368 |
361 367
|
syl |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) = if ( 𝑗 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑗 − 1 ) ) ) ) |
| 369 |
53 4
|
breqtrri |
⊢ 𝑀 < 𝑁 |
| 370 |
307
|
ltp1i |
⊢ 𝑁 < ( 𝑁 + 1 ) |
| 371 |
52 307 336
|
lttri |
⊢ ( ( 𝑀 < 𝑁 ∧ 𝑁 < ( 𝑁 + 1 ) ) → 𝑀 < ( 𝑁 + 1 ) ) |
| 372 |
369 370 371
|
mp2an |
⊢ 𝑀 < ( 𝑁 + 1 ) |
| 373 |
52 336
|
ltnlei |
⊢ ( 𝑀 < ( 𝑁 + 1 ) ↔ ¬ ( 𝑁 + 1 ) ≤ 𝑀 ) |
| 374 |
372 373
|
mpbi |
⊢ ¬ ( 𝑁 + 1 ) ≤ 𝑀 |
| 375 |
|
eleq1 |
⊢ ( 𝑗 = 𝑀 → ( 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ↔ 𝑀 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) ) |
| 376 |
|
elfzle1 |
⊢ ( 𝑀 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) → ( 𝑁 + 1 ) ≤ 𝑀 ) |
| 377 |
375 376
|
biimtrdi |
⊢ ( 𝑗 = 𝑀 → ( 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) → ( 𝑁 + 1 ) ≤ 𝑀 ) ) |
| 378 |
377
|
com12 |
⊢ ( 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) → ( 𝑗 = 𝑀 → ( 𝑁 + 1 ) ≤ 𝑀 ) ) |
| 379 |
374 378
|
mtoi |
⊢ ( 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) → ¬ 𝑗 = 𝑀 ) |
| 380 |
379
|
adantl |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) → ¬ 𝑗 = 𝑀 ) |
| 381 |
380
|
iffalsed |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) → if ( 𝑗 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑗 − 1 ) ) ) = ( 𝑔 ‘ ( 𝑗 − 1 ) ) ) |
| 382 |
368 381
|
eqtrd |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) = ( 𝑔 ‘ ( 𝑗 − 1 ) ) ) |
| 383 |
382
|
sbceq1d |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) → ( [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) / 𝑏 ] 𝜑 ↔ [ ( 𝑔 ‘ ( 𝑗 − 1 ) ) / 𝑏 ] 𝜑 ) ) |
| 384 |
356 383
|
sbceqbid |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) → ( [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) / 𝑏 ] 𝜑 ↔ [ ( 𝑔 ‘ ( ( 𝑗 − 1 ) − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ ( 𝑗 − 1 ) ) / 𝑏 ] 𝜑 ) ) |
| 385 |
384
|
biimpar |
⊢ ( ( ( 𝑚 ∈ 𝑍 ∧ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) ∧ [ ( 𝑔 ‘ ( ( 𝑗 − 1 ) − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ ( 𝑗 − 1 ) ) / 𝑏 ] 𝜑 ) → [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) / 𝑏 ] 𝜑 ) |
| 386 |
319 385
|
syldan |
⊢ ( ( ( 𝑚 ∈ 𝑍 ∧ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) → [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) / 𝑏 ] 𝜑 ) |
| 387 |
386
|
an32s |
⊢ ( ( ( 𝑚 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ∧ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) → [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) / 𝑏 ] 𝜑 ) |
| 388 |
387
|
adantlrl |
⊢ ( ( ( 𝑚 ∈ 𝑍 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) ∧ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) → [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) / 𝑏 ] 𝜑 ) |
| 389 |
388
|
adantlll |
⊢ ( ( ( ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑚 ∈ 𝑍 ) ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) ∧ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) → [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) / 𝑏 ] 𝜑 ) |
| 390 |
293 389
|
jaodan |
⊢ ( ( ( ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑚 ∈ 𝑍 ) ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) ∧ ( 𝑗 = 𝑁 ∨ 𝑗 ∈ ( ( 𝑁 + 1 ) ... ( 𝑚 + 1 ) ) ) ) → [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) / 𝑏 ] 𝜑 ) |
| 391 |
247 390
|
syldan |
⊢ ( ( ( ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑚 ∈ 𝑍 ) ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) ∧ 𝑗 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) ) → [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) / 𝑏 ] 𝜑 ) |
| 392 |
391
|
ralrimiva |
⊢ ( ( ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑚 ∈ 𝑍 ) ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) → ∀ 𝑗 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) / 𝑏 ] 𝜑 ) |
| 393 |
|
fvoveq1 |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 − 1 ) ) = ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑘 − 1 ) ) ) |
| 394 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) = ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑘 ) ) |
| 395 |
394
|
sbceq1d |
⊢ ( 𝑗 = 𝑘 → ( [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) / 𝑏 ] 𝜑 ↔ [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) |
| 396 |
393 395
|
sbceqbid |
⊢ ( 𝑗 = 𝑘 → ( [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) / 𝑏 ] 𝜑 ↔ [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) |
| 397 |
396
|
cbvralvw |
⊢ ( ∀ 𝑗 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) / 𝑏 ] 𝜑 ↔ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑘 ) / 𝑏 ] 𝜑 ) |
| 398 |
392 397
|
sylib |
⊢ ( ( ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑚 ∈ 𝑍 ) ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) → ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑘 ) / 𝑏 ] 𝜑 ) |
| 399 |
398
|
adantllr |
⊢ ( ( ( ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) → ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑘 ) / 𝑏 ] 𝜑 ) |
| 400 |
399
|
adantrlr |
⊢ ( ( ( ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) → ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑘 ) / 𝑏 ] 𝜑 ) |
| 401 |
400
|
3adantr1 |
⊢ ( ( ( ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) → ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑘 ) / 𝑏 ] 𝜑 ) |
| 402 |
|
ovex |
⊢ ( 𝑀 ... ( 𝑚 + 1 ) ) ∈ V |
| 403 |
402
|
mptex |
⊢ ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ∈ V |
| 404 |
|
feq1 |
⊢ ( 𝑓 = ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) → ( 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ↔ ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ) ) |
| 405 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) → ( 𝑓 ‘ 𝑀 ) = ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑀 ) ) |
| 406 |
405
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) → ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ↔ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑀 ) = 𝑐 ) ) |
| 407 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) → ( 𝑓 ‘ ( 𝑚 + 1 ) ) = ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑚 + 1 ) ) ) |
| 408 |
407
|
sbceq1d |
⊢ ( 𝑓 = ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) → ( [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ↔ [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ) |
| 409 |
406 408
|
anbi12d |
⊢ ( 𝑓 = ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) → ( ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ↔ ( ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑀 ) = 𝑐 ∧ [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ) ) |
| 410 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) → ( 𝑓 ‘ ( 𝑘 − 1 ) ) = ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑘 − 1 ) ) ) |
| 411 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) → ( 𝑓 ‘ 𝑘 ) = ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑘 ) ) |
| 412 |
411
|
sbceq1d |
⊢ ( 𝑓 = ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) → ( [ ( 𝑓 ‘ 𝑘 ) / 𝑏 ] 𝜑 ↔ [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) |
| 413 |
410 412
|
sbceqbid |
⊢ ( 𝑓 = ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) → ( [ ( 𝑓 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑓 ‘ 𝑘 ) / 𝑏 ] 𝜑 ↔ [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) |
| 414 |
116 413
|
bitr3id |
⊢ ( 𝑓 = ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) → ( 𝜒 ↔ [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) |
| 415 |
414
|
ralbidv |
⊢ ( 𝑓 = ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) → ( ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ↔ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) |
| 416 |
404 409 415
|
3anbi123d |
⊢ ( 𝑓 = ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) → ( ( 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ) ↔ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑀 ) = 𝑐 ∧ [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) ) |
| 417 |
403 416
|
spcev |
⊢ ( ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑀 ) = 𝑐 ∧ [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( ( 𝑥 ∈ ( 𝑀 ... ( 𝑚 + 1 ) ) ↦ if ( 𝑥 = 𝑀 , 𝑐 , ( 𝑔 ‘ ( 𝑥 − 1 ) ) ) ) ‘ 𝑘 ) / 𝑏 ] 𝜑 ) → ∃ 𝑓 ( 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ) ) |
| 418 |
206 213 238 401 417
|
syl121anc |
⊢ ( ( ( ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) → ∃ 𝑓 ( 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ) ) |
| 419 |
418
|
ex |
⊢ ( ( ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) → ∃ 𝑓 ( 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ) ) ) |
| 420 |
146 419
|
chvarvv |
⊢ ( ( ( [ 𝑑 / 𝑏 ] 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑑 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) → ∃ 𝑓 ( 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ) ) ) |
| 421 |
136 420
|
chvarvv |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) → ∃ 𝑓 ( 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ) ) ) |
| 422 |
421
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) → ∃ 𝑓 ( 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ) ) ) |
| 423 |
422
|
adantlll |
⊢ ( ( ( ( 𝜂 ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) → ∃ 𝑓 ( 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ) ) ) |
| 424 |
423
|
imp |
⊢ ( ( ( ( ( 𝜂 ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) → ∃ 𝑓 ( 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ) ) |
| 425 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... ( 𝑚 + 1 ) ) ) |
| 426 |
425
|
feq2d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ↔ 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ) ) |
| 427 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ ( 𝑚 + 1 ) ) ) |
| 428 |
427
|
sbceq1d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( [ ( 𝑓 ‘ 𝑛 ) / 𝑎 ] 𝜃 ↔ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ) |
| 429 |
45 428
|
bitr3id |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝜏 ↔ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ) |
| 430 |
429
|
anbi2d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ↔ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ) ) |
| 431 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑁 ... 𝑛 ) = ( 𝑁 ... ( 𝑚 + 1 ) ) ) |
| 432 |
431
|
raleqdv |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ↔ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ) ) |
| 433 |
426 430 432
|
3anbi123d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ↔ ( 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ) ) ) |
| 434 |
433
|
exbidv |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ↔ ∃ 𝑓 ( 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ) ) ) |
| 435 |
434
|
rspcev |
⊢ ( ( ( 𝑚 + 1 ) ∈ 𝑍 ∧ ∃ 𝑓 ( 𝑓 : ( 𝑀 ... ( 𝑚 + 1 ) ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ [ ( 𝑓 ‘ ( 𝑚 + 1 ) ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... ( 𝑚 + 1 ) ) 𝜒 ) ) → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) |
| 436 |
128 424 435
|
syl2anc |
⊢ ( ( ( ( ( 𝜂 ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) ) → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) |
| 437 |
436
|
ex |
⊢ ( ( ( ( 𝜂 ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
| 438 |
437
|
exlimdv |
⊢ ( ( ( ( 𝜂 ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ∧ 𝑚 ∈ 𝑍 ) → ( ∃ 𝑔 ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
| 439 |
438
|
rexlimdva |
⊢ ( ( ( 𝜂 ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ∃ 𝑚 ∈ 𝑍 ∃ 𝑔 ( 𝑔 : ( 𝑀 ... 𝑚 ) ⟶ 𝐴 ∧ ( ( 𝑔 ‘ 𝑀 ) = 𝑏 ∧ [ ( 𝑔 ‘ 𝑚 ) / 𝑎 ] 𝜃 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑚 ) [ ( 𝑔 ‘ ( 𝑘 − 1 ) ) / 𝑎 ] [ ( 𝑔 ‘ 𝑘 ) / 𝑏 ] 𝜑 ) → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
| 440 |
126 439
|
biimtrid |
⊢ ( ( ( 𝜂 ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑏 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
| 441 |
78 93 440
|
3syld |
⊢ ( ( ( 𝜂 ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ∀ 𝑑 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ¬ 𝑑 𝑅 𝑎 → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
| 442 |
441
|
an42s |
⊢ ( ( ( 𝜂 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝜑 ) ) → ( ∀ 𝑑 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ¬ 𝑑 𝑅 𝑎 → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
| 443 |
442
|
rexlimdvaa |
⊢ ( ( 𝜂 ∧ 𝑎 ∈ 𝐴 ) → ( ∃ 𝑏 ∈ 𝐴 𝜑 → ( ∀ 𝑑 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ¬ 𝑑 𝑅 𝑎 → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) ) |
| 444 |
443
|
imp |
⊢ ( ( ( 𝜂 ∧ 𝑎 ∈ 𝐴 ) ∧ ∃ 𝑏 ∈ 𝐴 𝜑 ) → ( ∀ 𝑑 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ¬ 𝑑 𝑅 𝑎 → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
| 445 |
71 444 10
|
mpjaodan |
⊢ ( ( 𝜂 ∧ 𝑎 ∈ 𝐴 ) → ( ∀ 𝑑 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ¬ 𝑑 𝑅 𝑎 → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
| 446 |
141
|
anbi1d |
⊢ ( 𝑐 = 𝑎 → ( ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ↔ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ) ) |
| 447 |
446
|
3anbi2d |
⊢ ( 𝑐 = 𝑎 → ( ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ↔ ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
| 448 |
447
|
exbidv |
⊢ ( 𝑐 = 𝑎 → ( ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ↔ ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
| 449 |
448
|
rexbidv |
⊢ ( 𝑐 = 𝑎 → ( ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ↔ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
| 450 |
449
|
elrab3 |
⊢ ( 𝑎 ∈ 𝐴 → ( 𝑎 ∈ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ↔ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
| 451 |
450
|
adantl |
⊢ ( ( 𝜂 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 ∈ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ↔ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
| 452 |
445 451
|
sylibrd |
⊢ ( ( 𝜂 ∧ 𝑎 ∈ 𝐴 ) → ( ∀ 𝑑 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ¬ 𝑑 𝑅 𝑎 → 𝑎 ∈ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ) |
| 453 |
452
|
ex |
⊢ ( 𝜂 → ( 𝑎 ∈ 𝐴 → ( ∀ 𝑑 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ¬ 𝑑 𝑅 𝑎 → 𝑎 ∈ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ) ) |
| 454 |
453
|
com23 |
⊢ ( 𝜂 → ( ∀ 𝑑 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ¬ 𝑑 𝑅 𝑎 → ( 𝑎 ∈ 𝐴 → 𝑎 ∈ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ) ) |
| 455 |
|
eldif |
⊢ ( 𝑎 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ↔ ( 𝑎 ∈ 𝐴 ∧ ¬ 𝑎 ∈ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ) |
| 456 |
455
|
notbii |
⊢ ( ¬ 𝑎 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ↔ ¬ ( 𝑎 ∈ 𝐴 ∧ ¬ 𝑎 ∈ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ) |
| 457 |
|
iman |
⊢ ( ( 𝑎 ∈ 𝐴 → 𝑎 ∈ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ↔ ¬ ( 𝑎 ∈ 𝐴 ∧ ¬ 𝑎 ∈ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ) |
| 458 |
456 457
|
bitr4i |
⊢ ( ¬ 𝑎 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ↔ ( 𝑎 ∈ 𝐴 → 𝑎 ∈ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ) |
| 459 |
454 458
|
imbitrrdi |
⊢ ( 𝜂 → ( ∀ 𝑑 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ¬ 𝑑 𝑅 𝑎 → ¬ 𝑎 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ) ) |
| 460 |
459
|
con2d |
⊢ ( 𝜂 → ( 𝑎 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) → ¬ ∀ 𝑑 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ¬ 𝑑 𝑅 𝑎 ) ) |
| 461 |
460
|
imp |
⊢ ( ( 𝜂 ∧ 𝑎 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ) → ¬ ∀ 𝑑 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ¬ 𝑑 𝑅 𝑎 ) |
| 462 |
461
|
nrexdv |
⊢ ( 𝜂 → ¬ ∃ 𝑎 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ∀ 𝑑 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ¬ 𝑑 𝑅 𝑎 ) |
| 463 |
|
df-ne |
⊢ ( ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ≠ ∅ ↔ ¬ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) = ∅ ) |
| 464 |
|
difss |
⊢ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ⊆ 𝐴 |
| 465 |
|
difexg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ∈ V ) |
| 466 |
1 465
|
ax-mp |
⊢ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ∈ V |
| 467 |
|
fri |
⊢ ( ( ( ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ∈ V ∧ 𝑅 Fr 𝐴 ) ∧ ( ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ⊆ 𝐴 ∧ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ≠ ∅ ) ) → ∃ 𝑎 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ∀ 𝑑 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ¬ 𝑑 𝑅 𝑎 ) |
| 468 |
466 467
|
mpanl1 |
⊢ ( ( 𝑅 Fr 𝐴 ∧ ( ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ⊆ 𝐴 ∧ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ≠ ∅ ) ) → ∃ 𝑎 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ∀ 𝑑 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ¬ 𝑑 𝑅 𝑎 ) |
| 469 |
468
|
expr |
⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ⊆ 𝐴 ) → ( ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ≠ ∅ → ∃ 𝑎 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ∀ 𝑑 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ¬ 𝑑 𝑅 𝑎 ) ) |
| 470 |
9 464 469
|
sylancl |
⊢ ( 𝜂 → ( ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ≠ ∅ → ∃ 𝑎 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ∀ 𝑑 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ¬ 𝑑 𝑅 𝑎 ) ) |
| 471 |
463 470
|
biimtrrid |
⊢ ( 𝜂 → ( ¬ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) = ∅ → ∃ 𝑎 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ∀ 𝑑 ∈ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) ¬ 𝑑 𝑅 𝑎 ) ) |
| 472 |
462 471
|
mt3d |
⊢ ( 𝜂 → ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) = ∅ ) |
| 473 |
|
ssdif0 |
⊢ ( 𝐴 ⊆ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ↔ ( 𝐴 ∖ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) = ∅ ) |
| 474 |
472 473
|
sylibr |
⊢ ( 𝜂 → 𝐴 ⊆ { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) |
| 475 |
81
|
a1i |
⊢ ( 𝜂 → { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ⊆ 𝐴 ) |
| 476 |
474 475
|
eqssd |
⊢ ( 𝜂 → 𝐴 = { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ) |
| 477 |
|
rabid2 |
⊢ ( 𝐴 = { 𝑐 ∈ 𝐴 ∣ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) } ↔ ∀ 𝑐 ∈ 𝐴 ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) |
| 478 |
476 477
|
sylib |
⊢ ( 𝜂 → ∀ 𝑐 ∈ 𝐴 ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) |
| 479 |
|
eqeq2 |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ↔ ( 𝑓 ‘ 𝑀 ) = 𝐶 ) ) |
| 480 |
479
|
anbi1d |
⊢ ( 𝑐 = 𝐶 → ( ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ↔ ( ( 𝑓 ‘ 𝑀 ) = 𝐶 ∧ 𝜏 ) ) ) |
| 481 |
480
|
3anbi2d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ↔ ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝐶 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
| 482 |
481
|
exbidv |
⊢ ( 𝑐 = 𝐶 → ( ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ↔ ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝐶 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
| 483 |
482
|
rexbidv |
⊢ ( 𝑐 = 𝐶 → ( ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ↔ ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝐶 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
| 484 |
483
|
rspcva |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑐 ∈ 𝐴 ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝐶 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) |
| 485 |
8 478 484
|
syl2anc |
⊢ ( 𝜂 → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝐶 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) |