Step |
Hyp |
Ref |
Expression |
1 |
|
fdc1.1 |
⊢ 𝐴 ∈ V |
2 |
|
fdc1.2 |
⊢ 𝑀 ∈ ℤ |
3 |
|
fdc1.3 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
4 |
|
fdc1.4 |
⊢ 𝑁 = ( 𝑀 + 1 ) |
5 |
|
fdc1.5 |
⊢ ( 𝑎 = ( 𝑓 ‘ 𝑀 ) → ( 𝜁 ↔ 𝜎 ) ) |
6 |
|
fdc1.6 |
⊢ ( 𝑎 = ( 𝑓 ‘ ( 𝑘 − 1 ) ) → ( 𝜑 ↔ 𝜓 ) ) |
7 |
|
fdc1.7 |
⊢ ( 𝑏 = ( 𝑓 ‘ 𝑘 ) → ( 𝜓 ↔ 𝜒 ) ) |
8 |
|
fdc1.8 |
⊢ ( 𝑎 = ( 𝑓 ‘ 𝑛 ) → ( 𝜃 ↔ 𝜏 ) ) |
9 |
|
fdc1.9 |
⊢ ( 𝜂 → ∃ 𝑎 ∈ 𝐴 𝜁 ) |
10 |
|
fdc1.10 |
⊢ ( 𝜂 → 𝑅 Fr 𝐴 ) |
11 |
|
fdc1.11 |
⊢ ( ( 𝜂 ∧ 𝑎 ∈ 𝐴 ) → ( 𝜃 ∨ ∃ 𝑏 ∈ 𝐴 𝜑 ) ) |
12 |
|
fdc1.12 |
⊢ ( ( ( 𝜂 ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → 𝑏 𝑅 𝑎 ) |
13 |
|
eleq1w |
⊢ ( 𝑐 = 𝑎 → ( 𝑐 ∈ 𝐴 ↔ 𝑎 ∈ 𝐴 ) ) |
14 |
13
|
anbi2d |
⊢ ( 𝑐 = 𝑎 → ( ( 𝜂 ∧ 𝑐 ∈ 𝐴 ) ↔ ( 𝜂 ∧ 𝑎 ∈ 𝐴 ) ) ) |
15 |
|
sbceq2a |
⊢ ( 𝑐 = 𝑎 → ( [ 𝑐 / 𝑎 ] 𝜁 ↔ 𝜁 ) ) |
16 |
14 15
|
anbi12d |
⊢ ( 𝑐 = 𝑎 → ( ( ( 𝜂 ∧ 𝑐 ∈ 𝐴 ) ∧ [ 𝑐 / 𝑎 ] 𝜁 ) ↔ ( ( 𝜂 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝜁 ) ) ) |
17 |
16
|
imbi1d |
⊢ ( 𝑐 = 𝑎 → ( ( ( ( 𝜂 ∧ 𝑐 ∈ 𝐴 ) ∧ [ 𝑐 / 𝑎 ] 𝜁 ) → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( 𝜎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ↔ ( ( ( 𝜂 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝜁 ) → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( 𝜎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) ) |
18 |
|
sbsbc |
⊢ ( [ 𝑑 / 𝑎 ] 𝜑 ↔ [ 𝑑 / 𝑎 ] 𝜑 ) |
19 |
|
nfv |
⊢ Ⅎ 𝑎 𝜓 |
20 |
19 6
|
sbhypf |
⊢ ( 𝑑 = ( 𝑓 ‘ ( 𝑘 − 1 ) ) → ( [ 𝑑 / 𝑎 ] 𝜑 ↔ 𝜓 ) ) |
21 |
18 20
|
bitr3id |
⊢ ( 𝑑 = ( 𝑓 ‘ ( 𝑘 − 1 ) ) → ( [ 𝑑 / 𝑎 ] 𝜑 ↔ 𝜓 ) ) |
22 |
|
sbsbc |
⊢ ( [ 𝑑 / 𝑎 ] 𝜃 ↔ [ 𝑑 / 𝑎 ] 𝜃 ) |
23 |
|
nfv |
⊢ Ⅎ 𝑎 𝜏 |
24 |
23 8
|
sbhypf |
⊢ ( 𝑑 = ( 𝑓 ‘ 𝑛 ) → ( [ 𝑑 / 𝑎 ] 𝜃 ↔ 𝜏 ) ) |
25 |
22 24
|
bitr3id |
⊢ ( 𝑑 = ( 𝑓 ‘ 𝑛 ) → ( [ 𝑑 / 𝑎 ] 𝜃 ↔ 𝜏 ) ) |
26 |
|
simprl |
⊢ ( ( 𝜂 ∧ ( 𝑐 ∈ 𝐴 ∧ [ 𝑐 / 𝑎 ] 𝜁 ) ) → 𝑐 ∈ 𝐴 ) |
27 |
10
|
adantr |
⊢ ( ( 𝜂 ∧ ( 𝑐 ∈ 𝐴 ∧ [ 𝑐 / 𝑎 ] 𝜁 ) ) → 𝑅 Fr 𝐴 ) |
28 |
|
nfv |
⊢ Ⅎ 𝑎 ( 𝜂 ∧ 𝑑 ∈ 𝐴 ) |
29 |
|
nfsbc1v |
⊢ Ⅎ 𝑎 [ 𝑑 / 𝑎 ] 𝜃 |
30 |
|
nfcv |
⊢ Ⅎ 𝑎 𝐴 |
31 |
|
nfsbc1v |
⊢ Ⅎ 𝑎 [ 𝑑 / 𝑎 ] 𝜑 |
32 |
30 31
|
nfrex |
⊢ Ⅎ 𝑎 ∃ 𝑏 ∈ 𝐴 [ 𝑑 / 𝑎 ] 𝜑 |
33 |
29 32
|
nfor |
⊢ Ⅎ 𝑎 ( [ 𝑑 / 𝑎 ] 𝜃 ∨ ∃ 𝑏 ∈ 𝐴 [ 𝑑 / 𝑎 ] 𝜑 ) |
34 |
28 33
|
nfim |
⊢ Ⅎ 𝑎 ( ( 𝜂 ∧ 𝑑 ∈ 𝐴 ) → ( [ 𝑑 / 𝑎 ] 𝜃 ∨ ∃ 𝑏 ∈ 𝐴 [ 𝑑 / 𝑎 ] 𝜑 ) ) |
35 |
|
eleq1w |
⊢ ( 𝑎 = 𝑑 → ( 𝑎 ∈ 𝐴 ↔ 𝑑 ∈ 𝐴 ) ) |
36 |
35
|
anbi2d |
⊢ ( 𝑎 = 𝑑 → ( ( 𝜂 ∧ 𝑎 ∈ 𝐴 ) ↔ ( 𝜂 ∧ 𝑑 ∈ 𝐴 ) ) ) |
37 |
|
sbceq1a |
⊢ ( 𝑎 = 𝑑 → ( 𝜃 ↔ [ 𝑑 / 𝑎 ] 𝜃 ) ) |
38 |
|
sbceq1a |
⊢ ( 𝑎 = 𝑑 → ( 𝜑 ↔ [ 𝑑 / 𝑎 ] 𝜑 ) ) |
39 |
38
|
rexbidv |
⊢ ( 𝑎 = 𝑑 → ( ∃ 𝑏 ∈ 𝐴 𝜑 ↔ ∃ 𝑏 ∈ 𝐴 [ 𝑑 / 𝑎 ] 𝜑 ) ) |
40 |
37 39
|
orbi12d |
⊢ ( 𝑎 = 𝑑 → ( ( 𝜃 ∨ ∃ 𝑏 ∈ 𝐴 𝜑 ) ↔ ( [ 𝑑 / 𝑎 ] 𝜃 ∨ ∃ 𝑏 ∈ 𝐴 [ 𝑑 / 𝑎 ] 𝜑 ) ) ) |
41 |
36 40
|
imbi12d |
⊢ ( 𝑎 = 𝑑 → ( ( ( 𝜂 ∧ 𝑎 ∈ 𝐴 ) → ( 𝜃 ∨ ∃ 𝑏 ∈ 𝐴 𝜑 ) ) ↔ ( ( 𝜂 ∧ 𝑑 ∈ 𝐴 ) → ( [ 𝑑 / 𝑎 ] 𝜃 ∨ ∃ 𝑏 ∈ 𝐴 [ 𝑑 / 𝑎 ] 𝜑 ) ) ) ) |
42 |
34 41 11
|
chvarfv |
⊢ ( ( 𝜂 ∧ 𝑑 ∈ 𝐴 ) → ( [ 𝑑 / 𝑎 ] 𝜃 ∨ ∃ 𝑏 ∈ 𝐴 [ 𝑑 / 𝑎 ] 𝜑 ) ) |
43 |
42
|
adantlr |
⊢ ( ( ( 𝜂 ∧ ( 𝑐 ∈ 𝐴 ∧ [ 𝑐 / 𝑎 ] 𝜁 ) ) ∧ 𝑑 ∈ 𝐴 ) → ( [ 𝑑 / 𝑎 ] 𝜃 ∨ ∃ 𝑏 ∈ 𝐴 [ 𝑑 / 𝑎 ] 𝜑 ) ) |
44 |
|
nfv |
⊢ Ⅎ 𝑎 𝜂 |
45 |
44 31
|
nfan |
⊢ Ⅎ 𝑎 ( 𝜂 ∧ [ 𝑑 / 𝑎 ] 𝜑 ) |
46 |
|
nfv |
⊢ Ⅎ 𝑎 ( 𝑑 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) |
47 |
45 46
|
nfan |
⊢ Ⅎ 𝑎 ( ( 𝜂 ∧ [ 𝑑 / 𝑎 ] 𝜑 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) |
48 |
|
nfv |
⊢ Ⅎ 𝑎 𝑏 𝑅 𝑑 |
49 |
47 48
|
nfim |
⊢ Ⅎ 𝑎 ( ( ( 𝜂 ∧ [ 𝑑 / 𝑎 ] 𝜑 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → 𝑏 𝑅 𝑑 ) |
50 |
38
|
anbi2d |
⊢ ( 𝑎 = 𝑑 → ( ( 𝜂 ∧ 𝜑 ) ↔ ( 𝜂 ∧ [ 𝑑 / 𝑎 ] 𝜑 ) ) ) |
51 |
35
|
anbi1d |
⊢ ( 𝑎 = 𝑑 → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ↔ ( 𝑑 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ) |
52 |
50 51
|
anbi12d |
⊢ ( 𝑎 = 𝑑 → ( ( ( 𝜂 ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ↔ ( ( 𝜂 ∧ [ 𝑑 / 𝑎 ] 𝜑 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ) ) |
53 |
|
breq2 |
⊢ ( 𝑎 = 𝑑 → ( 𝑏 𝑅 𝑎 ↔ 𝑏 𝑅 𝑑 ) ) |
54 |
52 53
|
imbi12d |
⊢ ( 𝑎 = 𝑑 → ( ( ( ( 𝜂 ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → 𝑏 𝑅 𝑎 ) ↔ ( ( ( 𝜂 ∧ [ 𝑑 / 𝑎 ] 𝜑 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → 𝑏 𝑅 𝑑 ) ) ) |
55 |
49 54 12
|
chvarfv |
⊢ ( ( ( 𝜂 ∧ [ 𝑑 / 𝑎 ] 𝜑 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → 𝑏 𝑅 𝑑 ) |
56 |
55
|
adantllr |
⊢ ( ( ( ( 𝜂 ∧ ( 𝑐 ∈ 𝐴 ∧ [ 𝑐 / 𝑎 ] 𝜁 ) ) ∧ [ 𝑑 / 𝑎 ] 𝜑 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → 𝑏 𝑅 𝑑 ) |
57 |
1 2 3 4 21 7 25 26 27 43 56
|
fdc |
⊢ ( ( 𝜂 ∧ ( 𝑐 ∈ 𝐴 ∧ [ 𝑐 / 𝑎 ] 𝜁 ) ) → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) |
58 |
57
|
anassrs |
⊢ ( ( ( 𝜂 ∧ 𝑐 ∈ 𝐴 ) ∧ [ 𝑐 / 𝑎 ] 𝜁 ) → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) |
59 |
|
idd |
⊢ ( ( ( 𝜂 ∧ 𝑐 ∈ 𝐴 ) ∧ [ 𝑐 / 𝑎 ] 𝜁 ) → ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 → 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ) ) |
60 |
|
dfsbcq |
⊢ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 → ( [ ( 𝑓 ‘ 𝑀 ) / 𝑎 ] 𝜁 ↔ [ 𝑐 / 𝑎 ] 𝜁 ) ) |
61 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑀 ) ∈ V |
62 |
61 5
|
sbcie |
⊢ ( [ ( 𝑓 ‘ 𝑀 ) / 𝑎 ] 𝜁 ↔ 𝜎 ) |
63 |
60 62
|
bitr3di |
⊢ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 → ( [ 𝑐 / 𝑎 ] 𝜁 ↔ 𝜎 ) ) |
64 |
63
|
biimpcd |
⊢ ( [ 𝑐 / 𝑎 ] 𝜁 → ( ( 𝑓 ‘ 𝑀 ) = 𝑐 → 𝜎 ) ) |
65 |
64
|
adantl |
⊢ ( ( ( 𝜂 ∧ 𝑐 ∈ 𝐴 ) ∧ [ 𝑐 / 𝑎 ] 𝜁 ) → ( ( 𝑓 ‘ 𝑀 ) = 𝑐 → 𝜎 ) ) |
66 |
65
|
anim1d |
⊢ ( ( ( 𝜂 ∧ 𝑐 ∈ 𝐴 ) ∧ [ 𝑐 / 𝑎 ] 𝜁 ) → ( ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) → ( 𝜎 ∧ 𝜏 ) ) ) |
67 |
|
idd |
⊢ ( ( ( 𝜂 ∧ 𝑐 ∈ 𝐴 ) ∧ [ 𝑐 / 𝑎 ] 𝜁 ) → ( ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 → ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) |
68 |
59 66 67
|
3anim123d |
⊢ ( ( ( 𝜂 ∧ 𝑐 ∈ 𝐴 ) ∧ [ 𝑐 / 𝑎 ] 𝜁 ) → ( ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) → ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( 𝜎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
69 |
68
|
eximdv |
⊢ ( ( ( 𝜂 ∧ 𝑐 ∈ 𝐴 ) ∧ [ 𝑐 / 𝑎 ] 𝜁 ) → ( ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) → ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( 𝜎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
70 |
69
|
reximdv |
⊢ ( ( ( 𝜂 ∧ 𝑐 ∈ 𝐴 ) ∧ [ 𝑐 / 𝑎 ] 𝜁 ) → ( ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( ( 𝑓 ‘ 𝑀 ) = 𝑐 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( 𝜎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) ) |
71 |
58 70
|
mpd |
⊢ ( ( ( 𝜂 ∧ 𝑐 ∈ 𝐴 ) ∧ [ 𝑐 / 𝑎 ] 𝜁 ) → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( 𝜎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) |
72 |
17 71
|
chvarvv |
⊢ ( ( ( 𝜂 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝜁 ) → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( 𝜎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) |
73 |
72 9
|
r19.29a |
⊢ ( 𝜂 → ∃ 𝑛 ∈ 𝑍 ∃ 𝑓 ( 𝑓 : ( 𝑀 ... 𝑛 ) ⟶ 𝐴 ∧ ( 𝜎 ∧ 𝜏 ) ∧ ∀ 𝑘 ∈ ( 𝑁 ... 𝑛 ) 𝜒 ) ) |