| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fdc1.1 |
|- A e. _V |
| 2 |
|
fdc1.2 |
|- M e. ZZ |
| 3 |
|
fdc1.3 |
|- Z = ( ZZ>= ` M ) |
| 4 |
|
fdc1.4 |
|- N = ( M + 1 ) |
| 5 |
|
fdc1.5 |
|- ( a = ( f ` M ) -> ( ze <-> si ) ) |
| 6 |
|
fdc1.6 |
|- ( a = ( f ` ( k - 1 ) ) -> ( ph <-> ps ) ) |
| 7 |
|
fdc1.7 |
|- ( b = ( f ` k ) -> ( ps <-> ch ) ) |
| 8 |
|
fdc1.8 |
|- ( a = ( f ` n ) -> ( th <-> ta ) ) |
| 9 |
|
fdc1.9 |
|- ( et -> E. a e. A ze ) |
| 10 |
|
fdc1.10 |
|- ( et -> R Fr A ) |
| 11 |
|
fdc1.11 |
|- ( ( et /\ a e. A ) -> ( th \/ E. b e. A ph ) ) |
| 12 |
|
fdc1.12 |
|- ( ( ( et /\ ph ) /\ ( a e. A /\ b e. A ) ) -> b R a ) |
| 13 |
|
eleq1w |
|- ( c = a -> ( c e. A <-> a e. A ) ) |
| 14 |
13
|
anbi2d |
|- ( c = a -> ( ( et /\ c e. A ) <-> ( et /\ a e. A ) ) ) |
| 15 |
|
sbceq2a |
|- ( c = a -> ( [. c / a ]. ze <-> ze ) ) |
| 16 |
14 15
|
anbi12d |
|- ( c = a -> ( ( ( et /\ c e. A ) /\ [. c / a ]. ze ) <-> ( ( et /\ a e. A ) /\ ze ) ) ) |
| 17 |
16
|
imbi1d |
|- ( c = a -> ( ( ( ( et /\ c e. A ) /\ [. c / a ]. ze ) -> E. n e. Z E. f ( f : ( M ... n ) --> A /\ ( si /\ ta ) /\ A. k e. ( N ... n ) ch ) ) <-> ( ( ( et /\ a e. A ) /\ ze ) -> E. n e. Z E. f ( f : ( M ... n ) --> A /\ ( si /\ ta ) /\ A. k e. ( N ... n ) ch ) ) ) ) |
| 18 |
|
sbsbc |
|- ( [ d / a ] ph <-> [. d / a ]. ph ) |
| 19 |
|
nfv |
|- F/ a ps |
| 20 |
19 6
|
sbhypf |
|- ( d = ( f ` ( k - 1 ) ) -> ( [ d / a ] ph <-> ps ) ) |
| 21 |
18 20
|
bitr3id |
|- ( d = ( f ` ( k - 1 ) ) -> ( [. d / a ]. ph <-> ps ) ) |
| 22 |
|
sbsbc |
|- ( [ d / a ] th <-> [. d / a ]. th ) |
| 23 |
|
nfv |
|- F/ a ta |
| 24 |
23 8
|
sbhypf |
|- ( d = ( f ` n ) -> ( [ d / a ] th <-> ta ) ) |
| 25 |
22 24
|
bitr3id |
|- ( d = ( f ` n ) -> ( [. d / a ]. th <-> ta ) ) |
| 26 |
|
simprl |
|- ( ( et /\ ( c e. A /\ [. c / a ]. ze ) ) -> c e. A ) |
| 27 |
10
|
adantr |
|- ( ( et /\ ( c e. A /\ [. c / a ]. ze ) ) -> R Fr A ) |
| 28 |
|
nfv |
|- F/ a ( et /\ d e. A ) |
| 29 |
|
nfsbc1v |
|- F/ a [. d / a ]. th |
| 30 |
|
nfcv |
|- F/_ a A |
| 31 |
|
nfsbc1v |
|- F/ a [. d / a ]. ph |
| 32 |
30 31
|
nfrexw |
|- F/ a E. b e. A [. d / a ]. ph |
| 33 |
29 32
|
nfor |
|- F/ a ( [. d / a ]. th \/ E. b e. A [. d / a ]. ph ) |
| 34 |
28 33
|
nfim |
|- F/ a ( ( et /\ d e. A ) -> ( [. d / a ]. th \/ E. b e. A [. d / a ]. ph ) ) |
| 35 |
|
eleq1w |
|- ( a = d -> ( a e. A <-> d e. A ) ) |
| 36 |
35
|
anbi2d |
|- ( a = d -> ( ( et /\ a e. A ) <-> ( et /\ d e. A ) ) ) |
| 37 |
|
sbceq1a |
|- ( a = d -> ( th <-> [. d / a ]. th ) ) |
| 38 |
|
sbceq1a |
|- ( a = d -> ( ph <-> [. d / a ]. ph ) ) |
| 39 |
38
|
rexbidv |
|- ( a = d -> ( E. b e. A ph <-> E. b e. A [. d / a ]. ph ) ) |
| 40 |
37 39
|
orbi12d |
|- ( a = d -> ( ( th \/ E. b e. A ph ) <-> ( [. d / a ]. th \/ E. b e. A [. d / a ]. ph ) ) ) |
| 41 |
36 40
|
imbi12d |
|- ( a = d -> ( ( ( et /\ a e. A ) -> ( th \/ E. b e. A ph ) ) <-> ( ( et /\ d e. A ) -> ( [. d / a ]. th \/ E. b e. A [. d / a ]. ph ) ) ) ) |
| 42 |
34 41 11
|
chvarfv |
|- ( ( et /\ d e. A ) -> ( [. d / a ]. th \/ E. b e. A [. d / a ]. ph ) ) |
| 43 |
42
|
adantlr |
|- ( ( ( et /\ ( c e. A /\ [. c / a ]. ze ) ) /\ d e. A ) -> ( [. d / a ]. th \/ E. b e. A [. d / a ]. ph ) ) |
| 44 |
|
nfv |
|- F/ a et |
| 45 |
44 31
|
nfan |
|- F/ a ( et /\ [. d / a ]. ph ) |
| 46 |
|
nfv |
|- F/ a ( d e. A /\ b e. A ) |
| 47 |
45 46
|
nfan |
|- F/ a ( ( et /\ [. d / a ]. ph ) /\ ( d e. A /\ b e. A ) ) |
| 48 |
|
nfv |
|- F/ a b R d |
| 49 |
47 48
|
nfim |
|- F/ a ( ( ( et /\ [. d / a ]. ph ) /\ ( d e. A /\ b e. A ) ) -> b R d ) |
| 50 |
38
|
anbi2d |
|- ( a = d -> ( ( et /\ ph ) <-> ( et /\ [. d / a ]. ph ) ) ) |
| 51 |
35
|
anbi1d |
|- ( a = d -> ( ( a e. A /\ b e. A ) <-> ( d e. A /\ b e. A ) ) ) |
| 52 |
50 51
|
anbi12d |
|- ( a = d -> ( ( ( et /\ ph ) /\ ( a e. A /\ b e. A ) ) <-> ( ( et /\ [. d / a ]. ph ) /\ ( d e. A /\ b e. A ) ) ) ) |
| 53 |
|
breq2 |
|- ( a = d -> ( b R a <-> b R d ) ) |
| 54 |
52 53
|
imbi12d |
|- ( a = d -> ( ( ( ( et /\ ph ) /\ ( a e. A /\ b e. A ) ) -> b R a ) <-> ( ( ( et /\ [. d / a ]. ph ) /\ ( d e. A /\ b e. A ) ) -> b R d ) ) ) |
| 55 |
49 54 12
|
chvarfv |
|- ( ( ( et /\ [. d / a ]. ph ) /\ ( d e. A /\ b e. A ) ) -> b R d ) |
| 56 |
55
|
adantllr |
|- ( ( ( ( et /\ ( c e. A /\ [. c / a ]. ze ) ) /\ [. d / a ]. ph ) /\ ( d e. A /\ b e. A ) ) -> b R d ) |
| 57 |
1 2 3 4 21 7 25 26 27 43 56
|
fdc |
|- ( ( et /\ ( c e. A /\ [. c / a ]. ze ) ) -> E. n e. Z E. f ( f : ( M ... n ) --> A /\ ( ( f ` M ) = c /\ ta ) /\ A. k e. ( N ... n ) ch ) ) |
| 58 |
57
|
anassrs |
|- ( ( ( et /\ c e. A ) /\ [. c / a ]. ze ) -> E. n e. Z E. f ( f : ( M ... n ) --> A /\ ( ( f ` M ) = c /\ ta ) /\ A. k e. ( N ... n ) ch ) ) |
| 59 |
|
idd |
|- ( ( ( et /\ c e. A ) /\ [. c / a ]. ze ) -> ( f : ( M ... n ) --> A -> f : ( M ... n ) --> A ) ) |
| 60 |
|
dfsbcq |
|- ( ( f ` M ) = c -> ( [. ( f ` M ) / a ]. ze <-> [. c / a ]. ze ) ) |
| 61 |
|
fvex |
|- ( f ` M ) e. _V |
| 62 |
61 5
|
sbcie |
|- ( [. ( f ` M ) / a ]. ze <-> si ) |
| 63 |
60 62
|
bitr3di |
|- ( ( f ` M ) = c -> ( [. c / a ]. ze <-> si ) ) |
| 64 |
63
|
biimpcd |
|- ( [. c / a ]. ze -> ( ( f ` M ) = c -> si ) ) |
| 65 |
64
|
adantl |
|- ( ( ( et /\ c e. A ) /\ [. c / a ]. ze ) -> ( ( f ` M ) = c -> si ) ) |
| 66 |
65
|
anim1d |
|- ( ( ( et /\ c e. A ) /\ [. c / a ]. ze ) -> ( ( ( f ` M ) = c /\ ta ) -> ( si /\ ta ) ) ) |
| 67 |
|
idd |
|- ( ( ( et /\ c e. A ) /\ [. c / a ]. ze ) -> ( A. k e. ( N ... n ) ch -> A. k e. ( N ... n ) ch ) ) |
| 68 |
59 66 67
|
3anim123d |
|- ( ( ( et /\ c e. A ) /\ [. c / a ]. ze ) -> ( ( f : ( M ... n ) --> A /\ ( ( f ` M ) = c /\ ta ) /\ A. k e. ( N ... n ) ch ) -> ( f : ( M ... n ) --> A /\ ( si /\ ta ) /\ A. k e. ( N ... n ) ch ) ) ) |
| 69 |
68
|
eximdv |
|- ( ( ( et /\ c e. A ) /\ [. c / a ]. ze ) -> ( E. f ( f : ( M ... n ) --> A /\ ( ( f ` M ) = c /\ ta ) /\ A. k e. ( N ... n ) ch ) -> E. f ( f : ( M ... n ) --> A /\ ( si /\ ta ) /\ A. k e. ( N ... n ) ch ) ) ) |
| 70 |
69
|
reximdv |
|- ( ( ( et /\ c e. A ) /\ [. c / a ]. ze ) -> ( E. n e. Z E. f ( f : ( M ... n ) --> A /\ ( ( f ` M ) = c /\ ta ) /\ A. k e. ( N ... n ) ch ) -> E. n e. Z E. f ( f : ( M ... n ) --> A /\ ( si /\ ta ) /\ A. k e. ( N ... n ) ch ) ) ) |
| 71 |
58 70
|
mpd |
|- ( ( ( et /\ c e. A ) /\ [. c / a ]. ze ) -> E. n e. Z E. f ( f : ( M ... n ) --> A /\ ( si /\ ta ) /\ A. k e. ( N ... n ) ch ) ) |
| 72 |
17 71
|
chvarvv |
|- ( ( ( et /\ a e. A ) /\ ze ) -> E. n e. Z E. f ( f : ( M ... n ) --> A /\ ( si /\ ta ) /\ A. k e. ( N ... n ) ch ) ) |
| 73 |
72 9
|
r19.29a |
|- ( et -> E. n e. Z E. f ( f : ( M ... n ) --> A /\ ( si /\ ta ) /\ A. k e. ( N ... n ) ch ) ) |